油藏模拟

高压/高温生物反应器系统的生物地球化学建模,用于增强地下氢存储中的微生物风险评估

对两个领先的软件平台进行了详细比较,证明了这些平台在模拟地质构造中复杂的储层动力学和生化反应以进行地下氢储存风险评估方面的有效应用。

摘要纳米分子结构。H2 氢
来源:Olemedia/Getty Images

地下储氢 (UHS) 可以成为高效环保的能源储存的宝贵解决方案,但它引入了复杂的微生物和地球化学相互作用,带来了独特的挑战。这项研究利用先进的生物地球化学模型来准确复制这些相互作用,并在实验室规模的生物反应器系统中重现,该系统模拟了许多地下储气库典型的高压和高温条件。

我们采用双平台方法,使用 COMSOL Multiphysics 和 CMG-GEM,并辅以 PHREEQC 等辅助模拟工具,对微生物种群和气体和液体成分的演变以及地质构造中的水化学过程进行了深入分析。我们的比较研究证明了这些平台在模拟热和流体动力学、质量传递和生化反应等复杂动力学方面的有效应用。

这些模型经过了严格的实验数据验证,显示出动力学参数拟合的高精度和重现观测到的现象的能力,包括在特定条件下微生物氢消耗率低于 0.05% 以及在高压下检测不到 H 2 S 生成。COMSOL 和 CMG-GEM 的模拟结果显示出显著的一致性,各自结果的差异在 3-5% 以内,证实了不同计算环境中模拟的可靠性和稳健性。

研究强调了整合多个模拟平台的好处,以便全面、比较地了解不同规模的生物地球化学过程。这种方法不仅增强了我们的预测能力,还促进了生物化学和地球化学动力学从生物反应器规模转移到储层规模模型,从而使氢储存的实施成为可能。

这些发现强调了建模工具在支持评估和管理与氢存储相关的微生物风险方面的潜力,有助于全面评估存储可行性。通过对两个领先的软件平台进行详细比较,我们建立了一个必要的方法框架,以推动 UHS 技术的安全实施。


本摘要摘自 NS Vasile、都灵理工大学和 Fondazione Istituto Italiano di Tecnologia 的论文 SPE 220064; A. Suriano,都灵理工大学; R. Bellini、I. Bassani 和 A. Vizzarro,意大利技术研究所基金会; C. Coti、D. Barbieri 和 M. Scapolo,Snam-Stogit,Via Libero Comune; D. Viberti、F. Verga 和 F. Pirri,都灵理工大学;和 B. Menin,Fondazione Istituto Italiano di Tecnologia 和 Istituto di Biologia e Biotecnologia Agraria,Consiglio Nazionale delle Ricerche。该论文已经过同行评审,并可在 OnePetro 的 SPE 期刊上以开放获取方式获取。

原文链接/JPT
Reservoir simulation

Biogeochemical Modeling of High-Pressure/High-Temperature Bioreactor Systems for Enhanced Microbial Risk Assessment in Underground Hydrogen Storage

A detailed comparison of two leading software platforms that demonstrates the effective application of these platforms in modeling complex reservoir dynamics and biochemical reactions in geological formations for risk assessment in underground hydrogen storage.

Abstract nano molecular structure. H2 hydrogen
Source: Olemedia/Getty Images

Underground hydrogen storage (UHS) can be a valuable solution for efficient and environmentally friendly energy storage, but it introduces complex microbial and geochemical interactions that pose unique challenges. This research leverages advanced biogeochemical modeling to accurately replicate these interactions, reproduced within a laboratory-scale bioreactor system that mimics the high-pressure and high-temperature conditions typical of many underground gas storages.

Using a dual-platform approach, we used COMSOL Multiphysics and CMG-GEM, augmented by supplementary simulation tools like PHREEQC, to perform an in-depth analysis of the evolution of microbial populations and gas and liquid composition and of the hydrochemical processes in geological formations. Our comparative study demonstrates the effective application of these platforms in modeling the complex dynamics of heat and fluid dynamics, mass transfer, and biochemical reactions.

The models were meticulously validated against experimental data, displaying high accuracy in kinetic parameter fitting and the ability to replicate the observed phenomena, including microbial hydrogen consumption rates below 0.05% under specified conditions and no detectable H2S production at high pressures. The simulation results from COMSOL and CMG-GEM showed remarkable agreement, with differences in the respective outcomes under 3–5%, confirming the reliability and robustness of the simulations across different computational environments.

The research highlights the benefits of integrating multiple simulation platforms to achieve a comprehensive and comparative understanding of biogeochemical processes at various scales. This approach not only enhances our predictive capabilities but also facilitates the transfer of biochemical and geochemical kinetics from bioreactor-scale to reservoir-scale models to make the implementation of hydrogen storage possible.

These findings underscore the potential of the modeling tools to support the assessment and management of microbial risks associated with hydrogen storage, contributing to fully assessing the storage feasibility. By providing a detailed comparison of two leading software platforms, we established an essential methodological framework for advancing the UHS technology toward safe implementation.


This abstract is taken from paper SPE 220064 by N. S. Vasile, Politecnico di Torino and Fondazione Istituto Italiano di Tecnologia; A. Suriano, Politecnico di Torino; R. Bellini, I. Bassani, and A. Vizzarro, Fondazione Istituto Italiano di Tecnologia; C. Coti, D. Barbieri, and M. Scapolo, Snam-Stogit, Via Libero Comune; D. Viberti, F. Verga, and F. Pirri, Politecnico di Torino; and B. Menin, Fondazione Istituto Italiano di Tecnologia and Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche. The paper has been peer reviewed and is available as Open Access in SPE Journal on OnePetro.