油藏模拟

贝叶斯框架帮助二叠纪 EOR 油田与数据不确定性进行历史匹配

本文的作者提出了贝叶斯框架的应用,用于二叠纪二氧化碳提高采收率油田的不确定性评估和有效历史匹配,以实现可靠的产量预测。

模拟模型的 3D 剖视图显示了不同的相对渗透率区域。
模拟模型的 3D 剖视图显示了不同的相对渗透率区域。

由于缺乏可用于建立预测油藏模型的高质量数据,油藏产量预测本质上是不确定的。传统上,尽管存在很大的不确定性,但在历史匹配过程中仍假设相对渗透率数据的最佳估计。围绕最佳估计相对渗透率情况执行敏感性将仅覆盖部分不确定性空间。在完整的论文中,作者提出了贝叶斯框架的应用,用于二叠纪二氧化碳 (CO 2 ) 提高采收率油田的不确定性评估和有效历史匹配,以实现可靠的产量预测。

字段详细信息

区域和构造地质学。

SPE_logo_CMYK_trans_sm.png
成为 SPE 会员继续阅读
SPE 会员:请在页面顶部登录才能访问此会员专享内容。如果您还不是会员,但发现 JPT 内容很有价值,我们鼓励您成为 SPE 会员社区的一部分,以获得完全访问权限。
原文链接/jpt
Reservoir simulation

Bayesian Framework Helps History Matching of Permian EOR Field With Data Uncertainty

The authors of this paper present an application of a Bayesian framework for uncertainty assessment and efficient history matching of a Permian CO2 enhanced oil recovery field for reliable production forecast.

A cut-away 3D view of the simulation model showing different relative permeability regions.
A cut-away 3D view of the simulation model showing different relative permeability regions.

Reservoir production forecasts are inherently uncertain because of the lack of quality data available to build predictive reservoir models. Traditionally, a best estimate for relative permeability data is assumed during the history-matching process despite significant uncertainty. Performing sensitivities around the best-estimate relative permeability case will cover only part of the uncertainty space. In the complete paper, the authors present an application of a Bayesian framework for uncertainty assessment and efficient history matching of a Permian carbon-dioxide (CO2) enhanced oil recovery field for reliable production forecasting.

Field Details

Regional and Structural Geology.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.