增强恢复能力

EOR 建模-2023

我们的行业始终表现出韧性、适应性和创造力。在行业向低碳运营转型的时代,选择性 EOR 方法存在复兴和贡献的机会。本专题中选定的论文包括开发高效 EOR 方案以及高级建模和优化的创新方法的示例。

带气泡的 EOR 建模简介

石油和天然气行业面临着前所未有的责任和期望,以可靠、可获取、安全和负担得起的能源继续推动世界经济和社会发展,同时应对全球保护自然资源和环境的紧迫性。大多数主要石油和天然气公司都宣布了与其业务运营相关的低碳或净零排放的脱碳战略。因此,降低石油生产的碳强度(每生产一桶石油排放的二氧化碳(CO 2)千克当量)对于满足环境要求至关重要。另一方面,世界上大约70%的国家已经设定了在未来三到五年内实现净零排放的目标,其中包括燃烧碳氢化合物的排放,这是一项重大挑战。在这一行业转型的紧迫任务中,出现了一个关于提高石油采收率 (EOR) 的优点和作用的主要问题。

尽管过去 4 年来在研发和试点方面进行了大量投资,但油田规模 EOR 的部署和贡献仍不足全球石油产量的 3%。EOR 表现不佳主要归因于竞争性替代方案(注水)、高成本、复杂的基础设施和供应链、油价波动等。在我们行业渴望可持续发展的时代,选择性 EOR 方法有复兴的机会,可以实现低碳强度的高效石油生产。例如,CO 2 EOR 直观上是一种双赢技术。然而,由于各种原因,包括CO 2来源的可用性和接近性以及储层条件的适用性,该方法可能并非在所有地方都可行。化学 EOR 方法,例如低盐度、基于聚合物和表面活性剂的方法,化学用量低,有可能减少用水量并提高采收率,特别是致密油储层的采收率。相比之下,本质上与高碳强度相关的 EOR 方法(例如热力 EOR)将面临更严格的执行限制,包括碳抵消的高昂成本。先进的建模和优化,包括引导式机器学习和数据分析,对于最大限度地提高恢复率、量化不确定性和管理风险,同时保护资源和降低成本至关重要。

本专题中选定的论文包括开发高效 EOR 方案以及高级建模和优化的创新方法的示例。其中之一是针对各种 EOR 方案(例如聚合物、表面活性剂、CO 2)设计优化的水化学,以提高效率,同时减少化学品的使用。第二个内容演示了集成的岩心到油田工作流程,用于在实验室规模的致密地层中设计基于表面活性剂的 EOR,并使用油田规模模拟展示其性能。第三篇论文演示了二叠纪 CO 2 -EOR油田的综合优化方法,其中使用先进的贝叶斯框架来捕获不确定性。

我们的行业始终表现出韧性、适应性和创造力。在行业向低碳运营转型的时代,选择性 EOR 方法存在复兴和贡献的机会。

本月的技术论文

研究评估致密碳酸盐中的表面活性剂 EOR

基于 Smartwater 的协同技术在提高石油采收率方面具有潜力

贝叶斯框架帮助二叠纪 EOR 油田与数据不确定性进行历史匹配

推荐补充阅读

SPE 208121 聚合物注入以解锁巨型碳酸盐油藏中的旁路石油:弥合实验室与大型聚合物项目之间的差距, 作者:Clement Fabbri、ADNOC 等人。

SPE 208127 世界上第一个海上重力辅助同时水-交替-气 EOR 全油田实施, 由 Ahmad Khanifar、Petronas 等人实施。

SPE 207449 使用耦合地表和地下模型对砂岩田中水-交替-注气进行数值优化, 作者:哈利法科技大学 Thaer I. Ismail 等人。


Hussein Hoteit, SPE,是沙特阿拉伯阿卜杜拉国王科技大学 (KAUST) 地球科学与工程教授兼能源与石油工程项目主席。在 2016 年加入阿卜杜拉国王科技大学之前,他在石油和天然气行业工作了大约 15 年,包括在雪佛龙和康菲石油公司,在那里他开展了与化学提高采收率 (EOR)、CO 2 -EOR、蒸汽驱以及其他方面相关的项目。提高采收率。Hoteit目前的研究包括化学EOR、注水优化、地质CO 2封存、地下储氢、玄武岩中CO 2矿化、数据驱动建模和油藏模拟开发。他发表了 150 多篇技术论文,并获得了多个 SPE 奖项。Hoteit 于 2009 年成为 SPE 杰出讲师,并于 2017 年获得 A Peer Apart 奖。他担任 SPE Journal 副主编超过 10 年。Hoteit 拥有黎巴嫩大学数学学士学位以及法国雷恩大学计算机科学和应用数学硕士和博士学位。

原文链接/jpt
Enhanced recovery

EOR Modeling-2023

Our industry has consistently demonstrated resilience, adaptivity, and creativity. In the era of industry transition to low-carbon operations, opportunities exist for selective EOR methods to revive and contribute. The selected papers in this feature include examples of innovative approaches for developing efficient EOR schemes and advanced modeling and optimization.

EOR Modeling intro with bubbles

The oil and gas industry is facing unprecedented responsibility and expectations to keep fueling the world’s economies and social developments with reliable, accessible, safe, and affordable energy sources while responding to the global urgency to safeguard natural resources and protect the environment. Most major oil and gas companies have announced decarbonization strategies for low-carbon or net-zero emissions associated with their business operations. Consequently, reducing the carbon intensity of oil production [kilograms of carbon dioxide (CO2) equivalent emitted per produced barrel of oil] will be pivotal to meeting the environmental mandate. On the other hand, approximately 70% of the world’s counties have set targets to reach net zero within the next 3–5 decades, including emissions from burned hydrocarbon, which is a major challenge. Within this exigent mission to transition the industry, a major question arises about the merit and the role of enhanced oil recovery (EOR).

With a share below 3% of the global oil production, field-scale EOR deployment and contribution have been modest despite substantial investments made in research and development and piloting in the last 4 decades. This underperformance of EOR has been attributed mostly to competitive alternatives (waterflooding), high cost, complex infrastructure and supply chains, fluctuating oil prices, and others. In the era of thirst for sustainability in our industry, there are reviving opportunities for selective EOR methods that can achieve efficient oil production with low carbon intensity. For instance, CO2 EOR is intuitively a win/win technology. This method may not be feasible everywhere for various reasons, however, including the availability and proximity of CO2 sources and the suitability of reservoir conditions. Chemical EOR methods, such as low-salinity, polymer-, and surfactant-based methods with low chemical usages have the potential to reduce water usage and enhance recovery factors, particularly from tight oil reservoirs. In contrast, EOR methods that are inherently associated with high carbon intensity, such as thermal EOR, will face stricter constraints to perform, including prohibitive costs for carbon offsetting. Advanced modeling and optimization, including guided machine learning and data analytics, will be crucial to maximizing recovery, quantifying uncertainties, and managing risk while preserving resources and reducing costs.

The selected papers in this feature include examples of innovative approaches for developing efficient EOR schemes and advanced modeling and optimization. In one inclusion, optimized water chemistry is engineered for various EOR schemes (e.g., polymer, surfactant, CO2) to improve efficiency while reducing chemical usage. The second inclusion demonstrates an integrated core-to-field work flow to design surfactant-based EOR for a tight formation at the laboratory scale and demonstrate its performance using field-scale simulations. An integrated optimization approach for a Permian CO2-EOR field is demonstrated in the third paper, where an advanced Bayesian framework is used to capture uncertainties.

Our industry has consistently demonstrated resilience, adaptivity, and creativity. In the era of industry transition to low-carbon operations, opportunities exist for selective EOR methods to revive and contribute.

This Month’s Technical Papers

Study Evaluates Surfactant EOR From Tight Carbonates

Smartwater-Based Synergistic Technologies Offer Potential in Enhanced Oil Recovery

Bayesian Framework Helps History Matching of Permian EOR Field With Data Uncertainty

Recommended Additional Reading

SPE 208121 Polymer Injection To Unlock Bypassed Oil in a Giant Carbonate Reservoir: Bridging the Gap Between Laboratory and Large-Scale Polymer Project by Clement Fabbri, ADNOC, et al.

SPE 208127 The World’s First Offshore Gravity-Assisted Simultaneous Water-Alternating-Gas EOR Full‑Field Implementation by Ahmad Khanifar, Petronas, et al.

SPE 207449 Numerical Optimization of Water-Alternating-Gas Injection in a Sandstone Field Using a Coupled Surface and Subsurface Model by Thaer I. Ismail, Khalifa University of Science and Technology, et al.


Hussein Hoteit, SPE, is a professor of earth science and engineering and chair of the Energy Resources and Petroleum Engineering program at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Before joining KAUST in 2016, he worked for approximately 15 years for the oil and gas industry, including at Chevron and ConocoPhillips, where he conducted projects related to chemical enhanced oil recovery (EOR), CO2-EOR, steamflooding, and other aspects of EOR. Hoteit’s current research includes chemical EOR, waterflooding optimization, geological CO2 sequestration, underground hydrogen storage, CO2 mineralization in basalt, data-driven modeling, and reservoir simulation development. He has published more than 150 technical papers and has earned several SPE awards. Hoteit was an SPE Distinguished Lecturer in 2009 and earned the A Peer Apart award in 2017. He served as an associate editor for SPE Journal for more than 10 years. Hoteit holds a BS degree in mathematics from the University of Lebanon and MS and PhD degrees in computer science and applied mathematics from the University of Rennes, France.