人工举升

气举-柱塞举升组合打造全生命周期生产解决方案

随着生产动态在致密油区的整个生命周期中不断演变,单一的人工举升方法可能不是最具成本效益的解决方案。

将合适的表面润滑器和数字控制器集成到气举系统中
将正确的表面润滑器和数字控制器集成到气举系统中,使操作员能够优化整个生命周期的生产,从完井后回流开始,通过从气举到 PAGL 的无缝过渡,一直延伸到下降曲线的末端。柱塞升程。
资料来源:ChampionX。

从二叠纪盆地的 Wolfcamp 和 Bone Spring 到丹佛-朱尔斯堡盆地的 Niobrara 和 Codell,10,000 英尺或更长的横向长度正在成为致密油资源区的常态(Rassenfoss 2022Addison,2021S&P 2021) 。

从生产的角度来看,较长的支管相当于每个井眼更大的增产岩石体积。这意味着更高的流量,但它也会带来更多的动态行为和更急剧的产量下降。延伸井轨迹通常伴随着高狗腿严重程度、高气/油比(GOR)以及砂和固体生产(Whitfield 2023S&P 2021)。

对于任何单一的人工举升方法来说,有效地适应所有这些因素,同时经济有效地管理随时间推移的自然下降可能是一个挑战。然而,气举和柱塞举升技术的结合为运营商提供了一种灵活的选择,以优化生产,从生产开始时的初始峰值流量开始,一直延伸到耗尽。

这种“全生命周期”方法包含三个不同的阶段,它们共同跨越致密油井递减曲线的整个斜率:

  • 气举早期到中期(从首次生产到±300 B/D)
  • 柱塞辅助气举 (PAGL) 的中晚期平台期(从 ±300 到 ±100 B/D)
  • 晚年柱塞升程(从±100 B/D 到最后一油)

在生产时间线的不同点利用气举、PAGL 和柱塞举升的人工举升方法,在致密油水平井中综合发挥了这三种方法的主要优势,包括

  • 气举能够模拟自然储层流动,通过降低流动油管压力并在储层和井眼之间产生压差,将流体提升到地面。
SPE_logo_CMYK_trans_sm.png
成为 SPE 会员继续阅读
SPE 会员:请在页面顶部登录才能访问此会员专享内容。如果您还不是会员,但发现 JPT 内容很有价值,我们鼓励您成为 SPE 会员社区的一部分,以获得完全访问权限。
原文链接/jpt
Artificial lift

Gas Lift-Plunger Lift Combination Creates Full Life Cycle Production Solution

As production dynamics evolve over the full life cycle of a tight-oil play, a single artificial lift method may not be the most cost-effective solution.

Integrating the right surface lubricator and digital controller in a gas lift system
Integrating the right surface lubricator and digital controller in a gas lift system enables operators to optimize full-life-cycle production beginning with post-completion flowback and extending all the way to the end of the decline curve by seamlessly transitioning from gas lift to PAGL to plunger lift.
Source: ChampionX.

From the Wolfcamp and Bone Spring in the Permian Basin to the Niobrara and Codell in the Denver-Julesburg Basin, lateral lengths of 10,000 ft or greater are becoming the norm in tight-oil resource plays (Rassenfoss 2022; Addison, 2021; S&P 2021).

From a production standpoint, longer laterals equate to greater stimulated rock volume per wellbore. That means higher flow rates, but it can also introduce more dynamic behavior and steeper production declines. The extended-well trajectories are often accompanied by high dogleg severities, high gas/oil ratios (GORs), and sand and solids production (Whitfield 2023; S&P 2021).

Efficiently accommodating all of these factors while cost-effectively managing natural declines over time can be a challenge for any single artificial lift method. However, the combination of gas lift and plunger lift technology gives operators a flexible option to optimize production beginning with initial peak flow rates at the start of production and extending all the way through to depletion.

This “full life cycle” approach encompasses three distinct phases that collectively span the entire slope of the tight-oil well decline curve:

  • Gas lift in early to mid-life (from first production to ±300 B/D)
  • Plunger-assisted gas lift (PAGL) in the mid- to late-life plateau (from ±300 to ±100 B/D)
  • Plunger lift in late life (from ±100 B/D to last oil)

An artificial lift approach leveraging gas lift, PAGL, and plunger lift at different points along the production timeline aggregately brings the key advantages of all three to bear in horizontal tight-oil wells, including

  • Gas lift’s ability to mimic natural reservoir flow, lifting fluids to surface by reducing the flowing tubing pressure and creating differential pressure between the reservoir and wellbore.
×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.