2024 年 4 月
特别关注:海上技术

海上发电脱碳解决方案

减少对碳氢化合物发电的依赖对于实现近期和长期可持续发展目标至关重要。西门子能源正在与主要海上运营商合作,实施电气化、自动化和数字化的脱碳战略。本文重点介绍了多个项目中技术的成功实施,并讨论了正在开发的其他有前途的概念。
Atle Stroemme / 西门子能源 Jarno Vakiparta / 西门子能源

发电燃料燃烧占海上石油和天然气行业范围 1 和范围 2 碳排放的大部分。在英国大陆架,海上平台每年估计产生 1800 万吨 CO 2 。据估计,其中 75% 与发电有关(1,350 万吨)。1同样,2022 年在墨西哥湾,燃气燃烧占总排放量的 76%(柴油燃烧另外占 9%)。2 

利用浮动海上风电:HYWIND TAMPEN 

用可再生能源(特别是海上浮式风电)产生的清洁电力来抵消传统发电,这是海上石油和天然气脱碳的关键杠杆。DNV 预测,到 2050 年,全球浮动风电装机容量将超过 250 吉瓦 (GW)。对于北海和墨西哥湾 (GOM) 等拥有石油和天然气基础设施的地区来说,风电场代表了降低碳氢化合物生产碳强度的机会。 

挪威北海的 Hywind Tampen 是世界上第一个专门为海上石油和天然气设施供电的浮动风电场。它的系统容量为88兆瓦,也是世界上最大的浮动海上风电场。 

该风电场抵消了 Equinor 的 Snorre 和 Gullfaks 海上油田燃气轮机发电机的电力需求,有助于每年减少 20 万吨 CO 2和 1,000 吨氮氧化物它满足了五个Snorre A和B以及Gullfaks A、B和C平台约35%的年电力需求。3 

西门子能源公司为 Hywind Tampen 提供了全部 11 台 8 MW 风力涡轮发电机。该公司的供货范围还包括为 Snorre 和 Gullfaks 设施提供电力的配电系统的 36 kV 连接,以及与平台 PMS 连接的风力发电电源管理系统 (PMS) 。这对于平衡风力涡轮机和燃气涡轮机之间的发电(即负载分配)起着至关重要的作用。同时还配备了数字孪生模拟器,其中包含整个电力系统的电网模型,使 Equinor 能够在无风险的虚拟环境中测试和验证某些条件。 

Hywind Tampen 于 2023 年 8 月全面投入运营。该项目是一项里程碑式的成就,预计将为未来几年更多的北海浮动风电开发铺平道路。 

岸上电力:TROLL WEST 电气化 

对于靠近陆地的资产来说,岸电代表了一种更经济的电气化策略。在挪威等国家尤其如此,该国超过 95% 的电网电力是通过清洁水力发电产生的。 

西门子能源在一些全球最大的岸电电气化项目中发挥了重要作用,包括 Johan Sverdrup、Martin Linge 和 Goliat。最近,该公司获得了 Troll West 开发项目的电气化合同,该开发项目包括挪威北海的两个石油生产设施。 

该项目的一个主要目标是通过用电力取代 Troll C 设施上现有的燃气轮机驱动发电机和压缩机以及为 Troll B 部分供电来减少 NOx 和 CO 2排放。总共提供约 116 MW 的电力通过来自卑尔根市西北部科尔斯内斯天然气加工厂的海底传输电缆连接到 Equinor 的 Troll B (30MW) 和 Troll C (86MW) 半潜式钻井平台。缆车路线从科尔斯内斯到特罗尔 B(79 公里)以及从特罗尔 B 到特罗尔 C(17 公里)。西门子能源公司负责电气系统的设计和执行,而阿克解决方案公司则负责该项目的 EPCI,而 Equinor 则担任该领域的运营商和项目所有者。 

据估计,Troll B平台的部分电气化和Troll C的全面电气化将每年减少约50万吨碳排放,相当于挪威所有排放量的约1%。此外,预计每年该油田的氮氧化物排放量将减少 1,700 吨。4 

西门子能源公司正在为该项目设计、安装和调试整个输电系统,包括变压器、电抗器、开关设备和静态变频器系统。这使得 Troll C 的压缩机电机能够实现电压稳定和从 50 Hz 到 60 Hz 的频率转换以及大型传动系统。 

西门子能源提供的PMS将有助于维持电力需求和消耗之间的安全平衡,确保电网的整体稳定性。它集成到现有的陆上和海上自动化系统中,包括 Troll C 压缩机组的控制。 

临时海上微电网:BLUEWIND 

对于许多油田开发来说,使用岸上电力或永久海上风资源来脱碳并不是一种选择。对于老化的生产和钻井资产尤其如此,这些资产可能仅剩有限的服务年限,或者远离陆地。 

西门子能源 BlueWind 概念允许这些设施使用完全独立的微电网实现脱碳,微电网包括一个或多个配备专用电池储能和电网转换器的临时海上浮动风力发电机组 (OFWU),图 1 

图 1. 西门子能源公司的 BlueWind 概念。

西门子能源的BlueVault锂离子电池解决方案和PMS构成了微电网系统的核心部分,它们共同保证了调峰和旋转备用的设计。每个浮动风力发电机组的设计都使储能高度冗余,即使出现单一临时故障,也能确保停电避免和服务连续性。 BlueVault 电池已安装在 60 多个海洋和近海应用中,包括世界上第一座柴油电动钻井平台 ( West Mira ) 以及无数的客运渡轮、渔船和 PSV。 

基于可再生能源的微电网可以通过海底电缆连接到任何生产(固定或浮动)或钻井装置,长度可达 2 公里(或更长,如果需要)。 

该概念具有可扩展性,可以根据主机设施的负载情况和电力需求进行部署。凭借简单的接口和强大的控制拓扑,对资产 PMS 的调整需求极小。微电网提供的稳定电力可以减少现有船载柴油或燃气轮机发电机的局部发电量。与采用燃气轮机的传统发电相比,风能和储能相结合,改善了能源结构,预计可减少 60% 至 70% 的碳排放。西门子能源公司正在与多家海上运营商合作部署 BlueWind 概念。 

即使没有可再生能源或能源储存,微电网也可能是有益的,尽管脱碳的潜力有所降低。 

微电网用例的一个典型场景是,运营商拥有多个相对接近的资产,面临着每个资产电力不足的挑战。这需要所有资产运行备用燃气轮机来弥补赤字。如果一台燃气轮机发生维护或故障,则必须进行减载,从而降低该资产的运行效率。 

将这些资产连接到微电网中,可以使集成电力系统更高效地运行,从而可以关闭一台或两台燃气轮机。微电网可以使用传统电力设备(即变压器和开关设备)或海底变压器和开关设备来建立,以尽量减少对上部设施的干扰。  

将传统发电与碳捕获和储存 (CCS) 相结合 

如今,西门子能源公司正在与多家合作伙伴合作开发交钥匙海上电力解决方案,该解决方案利用传统燃气联合循环发电和碳捕获与封存(CCS)技术。 

目前有几个概念正在开发中,包括固定式和浮动式安装。典型的功率输出范围为 100 MW 至 750 MW。电力生产基于西门子能源公司提供的联合循环发电厂。采用基于胺的碳捕获来捕获来自联合循环装置的高达 90% 的 CO 2 。然后, CO 2可以被压缩并注入到附近的地质构造中,或者被液化以运输到附近的CO 2终端。 

电力中心概念涵盖了广泛的潜在位置和用途: 

  • 位于海上中心,靠近生产设施,可实现多个平台的脱碳(而不是从岸上供电) 
  • 利用海上搁浅的天然气储备为岸上提供电力 
  • 靠近海岸/码头,为能源需求高的瓶颈地区提供电力。 

潜在的浮动电力中心概念之一是基于 Sevan 的 SSP 的地球静止船体设计。这种船体设计不需要转塔或旋转装置,可以容纳许多立管和动态电缆,从而实现低成本的临时连接。船体还具有高承载能力和良好的运动特性,并且可以轻松地重新部署到其他位置,图2。  

图 2. 浮动电源中心概念。

除了联合循环发电厂外,西门子能源公司还为该概念提供配电系统。集线器的电力可以通过海底电缆提供给多个平台。联合循环发电厂还可以与附近的风电场或岸上电力相结合,以进一步减少排放。  

海洋脱碳 

海上作业脱碳对于推动成功的能源转型将发挥至关重要的作用。国际航运尤其如此, 2022 年,国际航运约占全球能源相关 CO 2排放量的 2% 。5 

对于不同的船舶类型和行业,脱碳技术的技术适用性存在很大差异。近海船舶的选择包括多种替代能源。这些船舶的较短距离和高度可变的电力需求通常使得电力或混合电力和推进系统(包括柴油/燃气电力)比机械驱动更高效。自 2013 年推出以来,西门子能源的直流电网概念“BlueDrive Plus C”因其高效率、低排放和延长辅助发动机的维修间隔而成为 30 MW 以下发电厂的首选解决方案。 

在过去十年中,西门子能源已为 70 多艘船舶安装了电力推进系统。其中包括一些世界上最大的汽车和客运渡轮、渔船和 PSV。该公司还在钻机上实施了这些系统的变体(与电池储能相结合),以提高效率并减少柴油发电机组的排放。西门子能源公司与 DNV 等船级社合作,为动态定位船舶开发和提供先进的电气系统,使船舶的发电厂能够在闭环模式和 DP3 模式下运行。 

与小型运输和运营支援船不同,长途深海远洋船舶脱碳的选择较少,因为它们需要存储大量的推进能源。从重燃油(HFO)转向更清洁的替代品(例如液化天然气、液化石油气、绿色甲醇、绿色氨等)目前被认为是这些船舶减排的最佳途径。 

2022 年,西门子能源公司与 DNV、Fearnleys 和 Moss Maritime 合作开发了 Ocean Green 概念,这是一种适用于深海航运(尤其是液化天然气运输船)的新型低排放电力和推进系统。 Ocean Green是一种混合动力、联合循环动力和推进装置,采用SGT-400燃气轮机作为主发动机,结合蒸汽轮机和电池储能装置,图3 

图3. 海洋绿色混合电站。

燃气轮机实现的紧凑机舱布局可增加 7% 至 10% 的货运能力。与减少维护需求相结合,与采用 HFO 的传统长途运输公司相比,单位货运成本可降低高达 17%。包括甲烷在内的温室气体排放量也减少了 18%。其他优点包括更低的噪音和振动、改进的机动能力、更低的运营成本和等待操作期间的能耗。海洋绿色概念是面向未来的,因为燃气轮机可以燃烧包括氢气在内的各种电子燃料。 

展望未来 

石油和天然气行业脱碳对于推动成功的能源转型至关重要。如今,石油和天然气运营产生的温室气体排放量相当于 51 亿吨,约占全球能源相关排放总量的 15%。在 IEA 的 2050 年净零排放 (NZE) 情景中,这些活动的排放强度到本十年末下降了 50%。6 

运营商和设备制造商在解决海上发电排放方面取得了长足进步。尽管本文中讨论的一些概念对于市场来说可能相对较新,但它们基于已经使用了数十年的成熟技术。  

最终,没有任何单一的解决方案能够解决海上排放难题。需要多种技术和解决方案来涵盖不同的条件和应用。 

参考 

  1. https://www.worldoil.com/magazine/2021/august-2021/features/electrifying-offshore-oil-and-gas-facilities-with-floating-wind-turbines/
  2. https://www.spglobal.com/commodityinsights/en/ci/research-analysis/ghg-intensity-of-us-gulf-of-mexico-product-in-2022.html
  3. https://www.equinor.com/energy/hywind-tampen
  4. https://www.equinor.com/news/archive/20210423-development-plans-troll-west-electrification
  5. https://www.iea.org/energy-system/transport/international-shipping
  6. https://www.iea.org/reports/emissions-from-oil-and-gas-operations-in-net-zero-transitions
关于作者
阿特尔·斯特罗姆
西门子能源
Atle Stroemme 是西门子能源公司海事与近海战略与业务开发副总裁。他在电气化、自动化和数字化解决方案方面拥有 40 年的行业经验。
亚诺·瓦基帕塔
西门子能源
雅诺·瓦基帕塔 (Jarno Vakiparta) 是西门子能源公司的销售总监。他在传输、离岸和海事行业拥有超过 15 年的经验。
原文链接/WorldOil
April 2024
SPECIAL FOCUS: Offshore technology

Solutions for decarbonizing offshore power generation

Reducing reliance on hydrocarbons for power is critical to achieving near- and long-term sustainability targets. Siemens Energy is collaborating with major offshore operators to implement decarbonization strategies for electrification, automation and digitalization. This article highlights successful implementation of technologies at several projects and discusses other promising concepts under development.
Atle Stroemme / Siemens Energy Jarno Vakiparta / Siemens Energy

Fuel combustion for power generation represents the majority of Scope 1 and Scope 2 carbon emissions in the offshore oil and gas sector. On the UK Continental Shelf, offshore platforms produce an estimated 18 million tonnes of CO2 emissions per year. It is estimated that 75% of this is associated with power generation (13.5 million tonnes).1 Similarly, in the Gulf of Mexico during 2022, fuel gas combustion accounted for 76% of total emissions (diesel combustion represented an additional 9%).2 

HARNESSING FLOATING OFFSHORE WIND: HYWIND TAMPEN 

Offsetting conventional power generation with clean electricity from renewables—particularly offshore floating wind—is a key lever in decarbonizing offshore oil and gas. DNV predicts that by 2050, global installed floating wind capacity could reach over 250 gigawatts (GW). For areas where oil and gas infrastructure exists, like the North Sea and Gulf of Mexico (GOM), wind parks represent an opportunity to reduce the carbon intensity of hydrocarbon production. 

Hywind Tampen in the Norwegian North Sea is the world’s first floating wind farm built explicitly to power offshore oil and gas installations. With a system capacity of 88 MW, it is also the world’s largest floating offshore wind farm. 

The wind park offsets the need for power from gas turbine generators in Equinor’s Snorre and Gullfaks offshore fields, helping avoid 200,000 tonnes of CO2 and 1,000 tonnes of NOx per year. It meets about 35% of the annual electricity power demand of the five Snorre A and B and Gullfaks A, B and C platforms.3 

Siemens Energy provided all 11 of the 8 MW wind turbine generators for Hywind Tampen. The company’s scope of supply also included a 36-kV tie-in into the electrical distribution system providing power to the Snorre and Gullfaks facilities, along with the power management system (PMS) for the wind generation interfacing with the PMS of the platforms. This plays a crucial role in balancing power production (i.e., load sharing) between the wind turbines and the gas turbines. This was accompanied by a digital twin simulator with an electrical network model for the entire power system, which allows Equinor to test and validate certain conditions in a risk-free, virtual environment. 

Hywind Tampen became fully operational in August 2023. The project is a landmark achievement expected to pave the way for additional North Sea floating wind developments in the coming years. 

POWER FROM SHORE: TROLL WEST ELECTRIFICATION 

Power from shore represents a more economical electrification strategy for assets closer to land. This is particularly true in countries like Norway, where over 95% of grid electricity is generated via clean hydropower. 

Siemens Energy has played a significant role in some of the world’s largest power-from-shore electrification projects, including Johan Sverdrup, Martin Linge, and Goliat. More recently, the company was awarded the contract for electrification of the Troll West development, which consists of two oil-producing installations in the Norwegian North Sea. 

A key objective of the project is to reduce NOx and CO2 emissions, by replacing existing gas turbine-driven generators and compressors on the Troll C facility with electricity and partially electrifying Troll B. In total, roughly 116 MW of electrical power are being supplied to Equinor’s Troll B (30MW) and Troll C (86MW) semisubmersibles with a subsea transmission cable from the Kollsnes natural gas processing plant northwest of the city of Bergen. The cable route goes from Kollsnes to Troll B (79 km) and from Troll B to Troll C (17 km). While Siemens Energy spearheaded the electrical system design and its execution, Aker Solutions handled the EPCI of the project, with Equinor serving as the operator and project owner of the field. 

It is estimated that partial electrification of the Troll B platform and full electrification of Troll C will lower annual carbon emissions by approximately 500,000 tonnes—equivalent to about 1% of all emissions from Norway. In addition, NOx emissions from the field will be reduced by an estimated 1,700 tonnes per year.4 

Siemens Energy is designing, installing and commissioning the complete transmission system for the project, including transformers, reactors, switchgears and the static frequency converter systems. This enables voltage stabilization and frequency conversion from 50 Hz to 60 Hz and large-scale drive trains for the compressor motors at Troll C. 

The PMS provided by Siemens Energy will help maintain a safe balance between power demand and consumption, ensuring overall grid stability. It is integrated into the existing onshore and offshore automation systems, including control of compressor trains at Troll C. 

TEMPORARY OFFSHORE MICROGRIDS: BLUEWIND 

Using power from shore or permanent offshore wind resources to decarbonize is not an option for many field developments. This is particularly the case for aging production and drilling assets that may only have a limited number of service years remaining, or ones far from land. 

The Siemens Energy BlueWind concept allows these facilities to decarbonize, using fully independent microgrids, comprising one or more temporary offshore floating wind units (OFWUs) equipped with dedicated battery energy storage and grid converters, Fig. 1. 

Fig. 1. Siemens Energy’s BlueWind Concept.

Siemens Energy’s BlueVault lithium-ion battery solution and PMS form a core part of the microgrid system in that, together, they guarantee the design for peak shaving and spinning reserve. Each floating wind unit is designed to make energy storage highly redundant, ensuring black-out avoidance and service continuity despite single temporary failures. BlueVault batteries have been installed in more than 60 marine and offshore applications, including the world’s first diesel-electric drilling rig (West Mira), and countless passenger ferries, fishing boats and PSVs. 

The renewables-based microgrid can be connected to any production (fixed or floating) or drilling installation via a subsea cable, up to 2 km in length (or longer, if required). 

The concept is scalable and can be deployed to match the host facility’s load profile and power needs. With simple interfaces and robust control topology, there is minimal need for adaptations to the asset’s PMS. Stable power provided by the microgrid enables a reduction in localized electricity generation from existing onboard diesel or gas turbine generators. The improved energy mix with wind and energy storage, combined, can reduce carbon emissions by an estimated 60% to 70%, compared to conventional generation with gas turbines. Siemens Energy is working with multiple offshore operators to deploy the BlueWind concept. 

Microgrids also can be beneficial, even without renewables or energy storage, though the potential for decarbonization is reduced. 

One typical scenario for a microgrid use case involves an operator—with multiple assets in relative proximity—facing a challenge with a power deficit on each asset. This requires all assets to run the spare backup gas turbine to cover the deficit. In case of maintenance or failure on one gas turbine, load shedding must take place, reducing the operational efficiency of that asset. 

Tying the assets together in a microgrid enables the integrated power system to run more efficiently, allowing one or two gas turbines to be turned off. The microgrid can be established with traditional power equipment (i.e., transformers and switchgear), or subsea transformers and switchgear, to minimize disruption on the topside.  

COMBINING CONVENTIONAL GENERATION WITH CARBON CAPTURE AND STORAGE (CCS) 

Today, Siemens Energy is working with several partners to develop a turnkey, offshore power solution that leverages conventional gas-fired, combined cycle power generation with carbon capture and storage (CCS). 

There are several concepts currently under development, both for fixed and floating installations. Typical power outputs will be in the range of 100 MW to 750 MW. Electricity production is based on combined cycle power plants provided by Siemens Energy. Amine-based carbon capture is employed to capture up to 90% of the CO2 coming from the combined cycle plant. The CO2 can then be compressed and injected into a nearby geological formation or liquefied to be transported to a nearby CO2 terminal. 

The power hub concepts cover a wide range of potential locations and utilizations: 

  • Being centrally located offshore, close to production facilities, enabling decarbonization of several platforms (instead of power from shore) 
  • Utilizing stranded gas reserves offshore to provide electricity to shore 
  • Being near-shore/quay-side, to provide electricity in bottlenecked areas with high energy demand. 

One of the potential floating power hub concepts is based on Sevan’s SSP’s geostationary hull design. This hull design does not require a turret or swivel and can accommodate many risers and dynamic cables, allowing for low-cost provisional tie-ins. The hull also has a high load-carrying capacity and favorable motion characteristics, and it can be easily re-deployed to other locations, Fig. 2 

Fig. 2. Floating Power Hub Concept.

In addition to the combined cycle power plant, Siemens Energy is providing the electrical distribution system for the concept. Power from the hub can be supplied to multiple platforms via subsea cables. The combined cycle plant can also be combined with a nearby wind park or power from shore to further reduce emissions.  

MARINE DECARBONIZATION 

Decarbonizing maritime operations is an area that will play a vital role in driving a successful energy transition. This is particularly true with international shipping, which accounted for approximately 2% of global energy-related CO2 emissions in 2022.5 

The technical applicability of decarbonization technologies varies significantly for different ship types and trades. Options for short-sea vessels include several alternative power sources. The shorter distances and highly variable power demands for these ships often make electric or hybrid-electric power and propulsion systems (including diesel/gas-electric) more efficient than mechanical drives. Since its introduction in 2013, Siemens Energy's DC Grid concept, "BlueDrive Plus C," has become the preferred solution for electrical power plants up to 30 MW, due to its high efficiency, low emissions and prolonged service intervals for auxiliary engines. 

Over the last decade, Siemens Energy has installed electric propulsion systems on more than 70 marine vessels. This includes some of the world’s largest car and passenger ferries, fishing boats, and PSVs. The company also has implemented variations of these systems (in combination with battery energy storage) on drilling rigs to improve efficiency and reduce emissions from diesel gensets. Siemens Energy has collaborated with class authorities, such as DNV, to develop and supply advanced electrical systems for dynamic positioned vessels, allowing the vessels' power plants to operate in closed-ring mode, while in DP3 mode. 

Unlike smaller transport and operational support vessels, long-haul, deep-sea ocean-going ships have fewer options for decarbonization, as they need to store substantial amounts of energy for propulsion. Transitioning away from heavy fuel oil (HFO) to cleaner alternatives (e.g., LNG, LPG, green methanol, green ammonia, etc.) is currently considered the best path forward for emissions reductions for these vessels. 

In 2022, Siemens Energy partnered with DNV, Fearnleys, and Moss Maritime to develop the Ocean Green concept, a novel low-emission power and propulsion system for deep-sea shipping—particularly LNG carriers. The Ocean Green is a hybrid, combined cycle power and propulsion plant that utilizes an SGT-400 gas turbine as the main engine, in combination with a steam turbine and battery energy storage, Fig. 3. 

Fig. 3. Ocean Green Hybrid Power Plant.

The compact engine room layout, enabled by the gas turbine, allows for 7% to 10% increased cargo capacity. Combined with reduced maintenance requirements, this results in up to a 17% decrease in unit freight costs, compared to a conventional long-haul carrier powered by HFO. GHG emissions, including methane, are also reduced 18%. Other advantages include lower noise and vibrations, improved maneuvering capabilities, lower OPEX and lower energy consumption during waiting operations. The Ocean Green concept is future-proof, as the gas turbine is prepared to burn a variety of e-fuels including hydrogen. 

LOOKING AHEAD 

Decarbonizing the oil and gas industry is essential to driving a successful energy transition. Today, oil and gas operations generate the equivalent of 5.1 billion tonnes of GHG emissions, approximately 15% of total energy-related emissions globally. In the IEA’s Net Zero Emissions (NZE) by 2050 Scenario, the emission intensity of these activities falls 50% by the end of the decade.6 

Operators and equipment manufacturers are making considerable progress in addressing emissions from offshore power generation. Although some of the concepts discussed in this article may be relatively new to the marketplace, they are based on proven technologies that have been used for decades.  

In the end, no singular solution will solve the offshore emissions puzzle. A diverse range of technologies and solutions will be needed to cover the different conditions and applications. 

REFERENCES 

  1. https://www.worldoil.com/magazine/2021/august-2021/features/electrifying-offshore-oil-and-gas-facilities-with-floating-wind-turbines/
  2. https://www.spglobal.com/commodityinsights/en/ci/research-analysis/ghg-intensity-of-us-gulf-of-mexico-production-in-2022.html
  3. https://www.equinor.com/energy/hywind-tampen
  4. https://www.equinor.com/news/archive/20210423-development-plans-troll-west-electrification
  5. https://www.iea.org/energy-system/transport/international-shipping
  6. https://www.iea.org/reports/emissions-from-oil-and-gas-operations-in-net-zero-transitions
About the Authors
Atle Stroemme
Siemens Energy
Atle Stroemme is vice president of Strategy and Business Development, Maritime and Offshore at Siemens Energy. He has 40 years of industry experience in electrification, automation and digitalization solutions.
Jarno Vakiparta
Siemens Energy
Jarno Vakiparta is sales director at Siemens Energy. He has over 15 years of experience in the transmission, offshore and maritime industries.