地质力学公司教育下一代,帮助缩小人才差距

保持科学和工程经验和知识仍然是一个挑战。

地质力学是对岩石和土壤体中特定几何形状(井眼轨迹、地质结构-断层/裂缝、储层/覆盖层)中的应力、流体压力、机械特性/强度之间行为相互作用的工程评估。(来源:油田地质力学)

提出者:

勘探与生产标志

编者注:本文发表在 E&P 时事通讯中。请在此处订阅勘探与生产通讯 


地质力学涉及分析岩石应力的方式,包括断层如何以及何时发展,以及土壤和岩石的力学(即研究地质材料的力学行为)。根据 geoexpro.com 的定义,地质力学是研究地下岩石如何响应应力、压力和温度变化而变形或失效的学科。 

OilField Geomechanics LLC (OFG) 是一家地质力学工程咨询服务提供商,由 Marisela Sanchez-Nagel 博士和 Neal Nagel 博士(商业和生活伙伴)于 2014 年创立,专注于 HSE 保护。 

Sanchez-Nagel 表示:“我们与运营商和服务公司合作,在全球范围内开展项目,拥有超过 65 年的综合行业经验。” “我们的优势来自于我们在地质力学方面的坚实基础和经验,并采用直接、实用的方法来为我们的客户提供支持,无论是在管理层面、工程团队还是简单的交钥匙项目。我们处理近井眼的问题以及基于现场的地质力学应用,例如井眼稳定性、水力压裂、溶洞稳定性、盖层完整性和压实/沉降挑战。”

考虑到公司当前面临的问题,她提到保持科学和工程经验和知识仍然是一个挑战。

“这些知识和经验对于支持正在进行的决策和未来的投资绝对至关重要,”她说。

OFG 通过专业协会和培训公司提供地质力学培训课程,包括针对客户的课程和开放课程,并提供地质力学和相关工程主题领域的诉讼和专家证人支持。

在接受 E&P 独家采访时,Sanchez-Nagel 分享了对地质力学技术当前趋势、挑战和未来的见解。 

E&P:过去一两年地质力学技术如何发展?什么有效和/或无效?

油田地质力学有限责任公司
马里塞拉·桑切斯-内格尔博士

Sanchez-Nagel:虽然过去几年地质力学相关技术没有发生任何真正的革命性变化,但计算能力以及人工智能和机器学习在更好和/或更多方面的应用推动了演进性变化。快速评估数据。

从我们的角度来看,我们还看到地质力学业务对岩体行为(而不是实验室规模的行为)重新产生了兴趣,因为大规模现场实验室/实验和新的监测技术已经(重新)揭示了关键的岩体行为。岩体行为(包括岩石结构)在水力压裂作业等过程中的作用。

此外,我们发现,项目在分析的关键部分(即应力、力学性能和孔隙压力)中经常缺乏数据,并且更复杂的计算工具(需要更复杂的数据)无法改进工程解决方案。然而,人工智能和机器学习提供了一些检测实时事件的方法,当有适当的地质力学分析和模型来支持这些决策时,这些方法可以改善我们对特定挑战的响应。    

E&P:OFG 如何帮助应对上游行业面临的挑战?

Sanchez-Nagel:作为服务提供商,我们可以解决两个具体的挑战:知识/经验的保留和可用性以及本地规模或项目规模(而不是公司规模)的经济性。

例如,我们的培训课程侧重于利用科学和工程基础知识挑战常见实践和公认的“智慧”,以解释为什么某些东西有效(或无效!),以便它可以是预测性的而不是规定性的。此外(显然),我们的培训课程还旨在将知识和智慧传授给下一代科学家和工程师,同时也希望能够培养人们对地质力学工程的欣赏和兴趣。

油田地质力学

油田地质力学
油田地质力学课程包括地质力学基础知识、地质力学数据、非常规地质力学、钻井地质力学(井眼稳定性)和非常规油气水力压裂。(来源:油田地质力学)

从咨询方面来看,我们面临的挑战是传达这样的信息:虽然我们的努力需要花钱,但地质力学工程可以通过寻找削减成本的方法或通过增加产量、增加储量和提高采收率来寻找提高收入的方法来增加可观的价值。

E&P:您能分享一下最近的案例研究细节吗?

Sanchez-Nagel: 例如,我们有一个正在进行的项目,其中注水对于压力维持和恢复至关重要。优化水力压裂设计以保持储层中的裂缝并解决因枯竭而引起的应力变化至关重要。这些必须在油田规模上进行分析,包括复杂的地质结构和储层质量/性质的变化,以便以经济的方式优化开发计划。

油田地质力学
从两口水平井泵送的拉链式压裂的 OFG 数值模型结果(平面图):(左)三个水力压裂 (HF) 后的 Shmin 扰动(应力阴影);(右)水力裂缝尖端岩石中相应的诱发剪应力。该模型显示了拉链压裂操作过程中引起的应力场的复杂性以及相应的压裂长度。(来源:油田地质力学)

E&P:您在地质力学领域看到了哪些新兴趋势?

Sanchez-Nagel: 从地质力学的角度来看,现在很多人的兴趣集中在:

  1. 触发地震活动;
  2. 长期地下碳储存(CCS);
  3. 碳氢化合物和氢气的地下储存;
  4. 地热开发。

事实上,最后三个项目的一个关键部分是它们与第一个项目(触发的地震活动)相关的潜力。

这些努力在不同程度上更加关注基本地质力学数据的不确定性,特别是应力测量。压力测量新工具的开发似乎出现了新的趋势,并且人们对在该领域应用这些工具重新产生了兴趣。

E&P:您认为地质力学技术的未来将走向何方?还可以或需要哪些其他改进?

Sanchez-Nagel: 地下工程主要是为了应对不确定性。地质力学未来的一个重要方向将是通过更好的数据分析(例如人工智能)、更好地集成从智能系统(例如人工智能和机器)实时捕获的数据来减少这些不确定性(以改进我们的决策)。学习)以及在较长的项目生命周期内集成数据。

虽然我们不认为它会完全消失,但我们也认为当前大学对开发新的、数据更密集的计算模型的热情将开始减弱。这些工具经常被闲置,要么是因为它们未经证实,要么是因为它们的数据要求使它们不切实际。  

 油田地质力学
例如,在确定不同类型的工程应用的储层枯竭对应力的影响时,需要进行地质力学/流体流动耦合分析。OFG 解决这一问题的一种有效方法是使用强大的地质力学模拟器和复杂的流动模拟器,并在不同时间快照(单向、双向或迭代耦合)之间传输数据。(来源:油田地质力学)

E&P:您如何支持运营商实现净零未来?

Sanchez-Nagel: 我们正在积极为客户提供地下碳储存项目的地质力学技术以及碳中和地热项目的开发。 

E&P:OFG 2021-2022 年的目标是什么?

Sanchez-Nagel: 继续提供培训课程,并通过非常规油藏、水力压裂和地下储存地质力学等有趣的项目,扩大我们在世界各地的项目参与。扩大我们对溶液盐开采的参与,并继续扩大我们的专业知识至关重要的诉讼案件。

原文链接/hartenergy

Geomechanics Company Educating Next Generation, Helping Bridge the Talent Gap

Keeping scientific and engineering experience and knowledge in place continues to be a challenge.

Geomechanics is the engineering evaluation of the behavioral interplay between stresses, fluid pressure, mechanical properties/strength in a specific geometry (well trajectory, geological structures-fault/fractures, reservoir/overburden), in rocks and soils masses. (Source: OilField Geomechanics)

Presented by:

E&P logo

Editor's note: This article appears in the E&P newsletter. Subscribe to the E&P newsletter here.


Geomechanics involves analyzing the way rocks stress, including how and when faults will develop, as well as the mechanics of soil and rock (i.e., studying the mechanical behavior of geological materials). As defined by geoexpro.com, geomechanics is the study of how subsurface rocks deform or fail in response to changes of stress, pressure and temperature. 

OilField Geomechanics LLC (OFG), a provider of geomechanics engineering consulting services, was founded in 2014 by Dr. Marisela Sanchez-Nagel and Dr. Neal Nagel—partners in business and life—with a focus on HSE protection. 

"We have more than 65 years of combined industry experience, with operators and service companies, on projects spanning the globe," Sanchez-Nagel said. "Our strength comes from our solid foundation and experience in geomechanics, applied in a direct, practical approach tailored to support our clients, whether that be at the management level, for an engineering team or simply a turnkey project. We deal with near-wellbore and field-based geomechanics applications such as wellbore stability, hydraulic fracturing, solution cavern stability, caprock integrity and compaction/subsidence challenges."

Looking at the current issues being faced by companies, she mentioned that keeping scientific and engineering experience and knowledge in place continues to be a challenge.

"This knowledge and experience is absolutely critical to support ongoing decision-making and future investments," she said.

OFG offers training courses in geomechanics, both client-specific and open courses through professional societies and training companies, and it provides litigation and expert witness support in the areas of geomechanics and related engineering topics.

In an exclusive interview with E&P, Sanchez-Nagel shared insights on current trends, challenges and the future of geomechanics technology. 

E&P: How has geomechanics technology evolved over the past year or two? What has worked and/or not worked?

OilField Geomechanics LLC
Dr. Marisela Sanchez-Nagel

Sanchez-Nagel: While there have not been any real revolutionary changes in geomechanics-related technologies in the last couple of years, there continue to be evolutionary changes driven by computing capabilities and the application of AI and machine learning in the better and/or more rapid evaluation of data.

From our perspective, we’ve also seen the geomechanics business gain a renewed interest in rock mass behavior, as opposed to laboratory-scale behavior, as large-scale field laboratories/experiments and new monitoring techniques have (re-)revealed the critical role of the rock mass behavior, including rock fabric, during, for example, hydraulic fracturing operations.

In addition, we find that very often projects are data poor in the key components of our analyses (i.e., stresses, mechanical properties and pore pressure), and more sophisticated computing tools—requiring more sophisticated data—do not improve the engineering solutions. AI and machines learning are, however, providing some ways for detecting real-time events that can improve our response to a particular challenge when the proper geomechanical analyses and models are available to support these decisions.    

E&P: How is OFG helping address challenges faced in the upstream sector?

Sanchez-Nagel: As a service provider, we can address two specific challenges: knowledge/experience retention and availability and local-scale or project-scale (as opposed to corporate-scale) economics.

Our training courses, for example, focus on challenging common practice and accepted 'wisdom' using science and engineering fundamentals in order to explain why something works (or not!) so that it can be predictive rather than prescriptive. In addition (obviously), our training courses also serve to transfer knowledge and wisdom to a next generation of scientists and engineers but also, hopefully, build an appreciation and excitement for geomechanics engineering.

OilField Geomechanics

OilField Geomechanics
OilField Geomechanics course offerings include fundamentals of geomechanics, geomechanics data, geomechanics for unconventionals, drilling geomechanics (borehole stability) and hydraulic fracturing in unconventionals. (Source: OilField Geomechanics)

From the consulting side, our challenge is conveying that, while our efforts cost money, geomechanics engineering can add appreciable value by finding means to cut costs or by finding means to improve revenues via increased production, increased reserves and increased recovery.

E&P: Can you share any recent case study details?

Sanchez-Nagel: We have, for example, an ongoing project in which water injection is critical for pressure maintenance and recovery. The optimization of hydraulic fracturing design to keep the fractures in the reservoir and address the changes in stresses as a result of depletion are critical. These have to be analyzed at a field-scale, including complex geological structures and reservoir quality/properties variability, in order to optimize the development plan in an economical way.

OilField Geomechanics
OFG numerical model results for zipper fracs pumped from two horizontal wells (plan view): (left) Shmin perturbations (stress shadows) after three hydraulic fractures (HFs); (right) corresponding induced shear stresses in the rock at the tip of the hydraulic fractures. The model shows the complexity of the stress field induced and the corresponding frac lengths during the zipper frac operation. (Source: OilField Geomechanics)

E&P: What emerging trends are you seeing in the geomechanics space?

Sanchez-Nagel: From a geomechanics perspective, a lot of interest is now focused on:

  1. Triggered seismicity;
  2. Long-term, underground carbon storage (CCS);
  3. Underground storage of hydrocarbons AND hydrogen; and
  4. Geothermal develops.

In fact, a critical part of the last three items is their potential related to the first item (triggered seismicity).

These efforts, to varying degrees, are putting additional focus on the uncertainty in basic geomechanics data, particularly stress measurement. There appears to be a nascent trend regarding the development of new tools for stress measurements and renewed interest in applying these tools in the field.

E&P: Where do you see the future of geomechanics technology headed? What other improvements can be made or are needed?

Sanchez-Nagel: Engineering in the subsurface is largely about dealing with uncertainty. A significant future direction for geomechanics will be in reducing these uncertainties (in order to improve our decision-making) through better data analyses (e.g., AI), better integration of the data captured in real time from smart systems (e.g., AI and machine learning) and integration of data over extended, life-of-project, periods of time.

While we don’t see it going away entirely, we also think that the current fervor over the development of new and more data-intensive computational models in the universities will begin to wane. Too often these tools go unused, either because they are unproven or because their data requirements make them impractical.  

 OilField Geomechanics
Coupled geomechanics/fluid flow analyses are needed when determining, for example, the effect of reservoir depletion on the stresses, for different type of engineering applications. An efficient way OFG has tackled this problem is by using powerful geomechanics simulators and sophisticated flow simulators and transferring data between them at different time snapshots (one-way, two-way or iterative coupling). (Source: OilField Geomechanics)

E&P: How are you supporting operators aiming for a net-zero future?

Sanchez-Nagel: We are actively supporting our clients with geomechanics technology for underground carbon storage projects as well as the development of carbon-neutral geothermal efforts. 

E&P: What are OFG's 2021-2022 goals?

Sanchez-Nagel: Continue to provide training courses and expand our project participation around the world with interesting projects in unconventional reservoirs, hydraulic fracturing and underground storage geomechanics. Expand our participation in solution salt mining and continue growing in litigation cases in which our expertise is critical.