非常规/复杂油藏

机器学习帮助填补伊拉克油藏缺失的岩石物理数据

本研究比较了七种估算技术,用于预测伊拉克南部北鲁迈拉油田两口井缺失的岩心测量水平和垂直渗透率和孔隙度数据。

R1井(碎屑岩储层)和R2井(碳酸盐岩储层)
图 1 — 左侧两个柱状图显示了 R1 井(碎屑岩储层)和 R2 井(碳酸盐储层)中缺失的岩石物理特性的比例。右侧显示了缺失数据与深度(垂直刻度)的关系模式。缺失数据显示为红色,测量数据显示为蓝色。右侧垂直刻度显示了每种组合中的数据分数。<i>μ</i> = 孔隙度,<i>k<sub>H</sub></i> = 水平渗透率,<i>k<sub>V</sub></i> = 垂直渗透率。
来源:SPE 218890。

论文全文中描述的研究全面比较了七种用于预测伊拉克南部北鲁迈拉油田两口井缺失的岩心测量水平和垂直渗透率和孔隙度数据的插补技术。结果表明,对于所研究的碎屑岩和碳酸盐岩数据集,由链式方程多元插补 (MICE) 和分类回归树 (CART) 组成的数据插补方法优于其他方法。这种新颖的工作流程适用于碎屑岩和碳酸盐岩储层。

介绍

为了在 3D 油藏建模中考虑油藏非均质性,需要采用先进技术来提高估算缺失岩心分析数据点的准确性和可靠性。缺失数据的填补是指一系列统计和机器学习 (ML) 方法,这些方法可补充岩心样品再分析或额外的岩心样品收集以填补数据空白。

本研究评估了涉及 ML 算法的七种数据插补方法:

  • 基于迭代稳健模型的插补 (IRMI)
  • MICE与CART相结合
  • 缺失数据随机插补(RIMD)
  • 序贯插补(SEQimpute)
  • 随机森林插补(RF)
  • 主成分分析插补(PCA)
  • 不完整多元数据的多重插补(AMELIA 包)

这些岩心数据估算方法已应用于北鲁迈拉油田碎屑岩 Zubair 组的两口井。

图片尺寸 1280X1280
以 SPE 会员身份继续阅读
SPE 会员:请在页面顶部登录以访问此会员专属内容。如果您不是会员,但您认为 JPT 内容很有价值,我们鼓励您加入 SPE 会员社区以获得完全访问权限。
原文链接/JPT
Unconventional/complex reservoirs

Machine Learning Aids Imputation of Missing Petrophysical Data in Iraqi Reservoir

This study compares seven imputation techniques for predicting missing core-measured horizontal and vertical permeability and porosity data in two wells drilled in the North Rumaila oil field in southern Iraq.

Well R1 (clastic reservoir) and Well R2 (carbonate reservoir)
Fig. 1—The proportion of missing petrophysical properties in Well R1 (clastic reservoir) and Well R2 (carbonate reservoir) is shown in the two histograms on the left. The pattern of the missing data in relation to depth (vertical scale) is displayed on the right. Missing data are displayed in red and measured data in blue. The fraction of data in each combination is shown on the right-side vertical scale. <i>Φ</i> = porosity, <i>k<sub>H</sub></i> = horizontal permeability, <i>k<sub>V</sub></i> = vertical permeability.
Source: SPE 218890.

The study described in the complete paper comprehensively compares seven imputation techniques for predicting missing core-measured horizontal and vertical permeability and porosity data in two wells drilled in the North Rumaila oil field of southern Iraq. The results reveal that a data-imputation method consisting of multivariate imputation by chained equations (MICE) combined with classification and regression trees (CART) outperforms the other methods with the clastic and carbonate data sets studied. The novel workflow is suitable for application in both clastic and carbonate reservoir formations.

Introduction

To account for reservoir heterogeneity in 3D reservoir modeling, advanced techniques are required to improve the accuracy and reliability of estimating missing core-analysis data points. The imputation of missing data refers to a range of statistical and machine-learning (ML) methods that supplement core-sample reanalysis or additional core-sample collection to fill data gaps.

This study evaluates seven data-imputation methods involving ML algorithms:

  • Iterative robust model-based imputation (IRMI)
  • MICE combined with CART
  • Random imputation of missing data (RIMD)
  • Sequential imputation (SEQimpute)
  • Random forest imputation (RF)
  • Principal component analysis imputation (PCA)
  • Multiple imputation of incomplete multivariate data (AMELIA package)

These core-data imputation methods are applied to two wells penetrating the clastic Zubair formation of the North Rumaila oil field.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.