油藏模拟

碳酸盐岩低盐度聚合物驱地球化学模拟

本文提出了一项基础研究,其主要目的是建立一个机械数值模型,该模型使用组合油藏流动和地球化学数值模拟器,通过各种机械方程来捕捉聚合物驱的重要机制。

抽象蓝色波浪和飞溅的 3d 插图
资料来源:koyu/Getty Images

全球能源需求持续增长,石油天然气行业是满足这一需求的重要能源供应方。然而,该行业面临着监管限制和勘探复杂性的挑战,这使得最大限度地提高现有油田的采收率成为必要。提高采收率 (EOR) 技术在提高采用传统一次采收和二次采收方法开采的油藏采收率方面已展现出巨大潜力。

化学EOR技术,特别是聚合物驱(PF),已被证明能够以合理的技术和经济成本提高宏观波及效率,并改变岩石与流体的相互作用。为了选择合适的聚合物,必须了解聚合物、盐水和岩石相之间的扩散、聚合物吸附以及地球化学相互作用的影响。

本研究的主要目的是提出一个机械模型,该模型利用耦合的储层流动和地球化学数值模拟器[MATLAB 储层模拟工具箱 (MRST)/IPhreeqc 模拟器],从地球化学角度捕捉聚合物在多孔介质中流动的物理化学特性,并应用于碳酸盐岩。我们开发了一个基于 MRST 储层流动和 IPhreeqc 地球化学模拟器的机械模型,并对 MRST 聚合物模块进行了修改,以模拟聚合物粘度、吸附、不可接近孔隙体积、残余阻力因子、水解和剪切效应等关键参数。

集成了IPhreeqc的表面络合模型,用于模拟印第安纳州石灰岩碳酸盐岩,并引入了丙烯酰胺叔丁基磺酸钠(ATBS)聚合物,用于与MRST低盐度聚合物(LSP)驱油模式的模拟器进行相互作用。吸附平衡通过热力学反应和流动方程来捕捉。更新后的模拟器已通过碳酸盐岩实验测试进行了验证。

结果证明了该模拟器在模拟LSP主要机制方面的有效性。本研究为PF中的地球化学、储层流动和吸附提供了见解。整合地球化学因素对于优化中东恶劣碳酸盐岩储层条件下的PF至关重要,有助于提高区域石油采收率。此外,敏感性分析表明,聚合物浓度显著影响方解石溶解、聚合物吸附和采出盐水中的pH值变化,凸显了地球化学相互作用在优化PF策略中的关键作用。


本文摘要摘自论文 SPE 218842,作者为哈利法科技大学的 AG Tellez Arellano、EW Al-Shalabi、AM Hassan 和 M. Zeynalli;以及法赫德国王石油矿产大学的 MS Kamal、S. Patil 和 SM Shakil Hussain。该论文已通过同行评审,并以开放获取的形式在 OnePetro 的 SPE 期刊上发布。

原文链接/JPT
Reservoir simulation

Geochemical Modeling of Low-Salinity Polymer Flooding for Carbonate Rocks

This paper presents a fundamental research study with the main objective of building a mechanistic numerical model that captures the important mechanisms of polymer flooding through various mechanistic equations using a combined reservoir flow and geochemical numerical simulator.

3d illustration of abstract blue waves and splashes
Source: koyu/Getty Images

The demand for global energy has been increasing continuously, and the oil and gas industry is a significant supplier of energy required to meet this demand. However, the industry faces challenges from regulatory constraints and exploration complexity, which have made it necessary to maximize oil recovery from existing fields. Enhanced oil recovery (EOR) techniques have shown great potential in increasing oil recovery from reservoirs that were produced by conventional primary and secondary recovery methods.

Chemical EOR techniques, specifically polymer flooding (PF), have proved valuable in improving the macroscopic sweep efficiency and changing rock and fluid interactions at a reasonable technical and economic cost. To appropriately select a suitable polymer, it is essential to understand the effects of diffusion, polymer adsorption, and geochemical interactions between the polymer, brine, and rock phases.

The main objective of this study is to propose a mechanistic model that captures the physicochemical aspects of polymer flow in porous media through a geochemical perspective using a coupled reservoir flow and geochemical numerical simulator [MATLAB Reservoir Simulation Toolbox (MRST)/IPhreeqc simulator] for applications in carbonate rocks. We developed a mechanistic model using MRST reservoir flow and the IPhreeqc geochemical simulator, with the MRST polymer module modified to model key parameters such as polymer viscosity, adsorption, inaccessible pore volume, residual resistance factor, hydrolysis, and shear effects.

Surface complexation modeling from IPhreeqc was integrated to model Indiana limestone carbonate rocks and introduced a polymer species of sodium acrylamido tertiobutyl sulfonate (ATBS) polymer for interaction within the MRST simulator for low-salinity polymer (LSP) flooding paradigm. The adsorption equilibrium is captured through thermodynamic reactions and flow equations. The updated simulator was validated against experimental tests for carbonate rocks.

The results prove the simulator’s effectiveness in modeling the main mechanisms of LSP. This study offers insights into geochemical, reservoir flow, and adsorption in PF. The integration of geochemical factors is crucial for optimizing PF in the Middle East’s harsh carbonate reservoir conditions, enhancing regional oil recovery. Furthermore, the sensitivity analysis demonstrated that polymer concentration significantly affects calcite dissolution, polymer adsorption, and pH changes in the produced brine, highlighting the critical role of geochemical interactions in optimizing PF strategies.


This abstract is taken from paper SPE 218842 by A. G. Tellez Arellano, E. W. Al-Shalabi, A. M. Hassan, and M. Zeynalli, Khalifa University of Science and Technology; and M. S. Kamal, S. Patil, and S. M. Shakil Hussain, King Fahd University of Petroleum and Minerals. The paper has been peer reviewed and is available as Open Access in SPE Journal on OnePetro.