数据与分析

客座社论:超越“最佳匹配”:重新思考 Type Wells 的最佳实践以及利用百分位数实现更多功能

最佳实践并不是一成不变的;它们随着重新定义可实现目标的进步而发展。

金融和经济危机。经济衰退,萧条。情况好转后,请将图片水平翻转。
资料来源:巴托洛梅·奥佐纳斯/盖蒂图片社。

在构建油气生产典型井剖面(TWP)时,传统方法依赖递减曲线参数来“最佳拟合”平均历史产量。虽然这种方法在行业中表现良好,但它本质上简化了非常规油藏的非线性行为,并带来了局限性(SPE 158867)

随着人工智能 (AI) 模型在预测未来产量方面的应用不断进步,这种最佳拟合简化方法已不再必要。随着行业转向更紧密的井距以及 Tier 1a 和 Tier 2 岩层的开发,利用更多数据进行产量预测变得越来越重要。

基于人工智能的预测,结合基于百分位数的方法(例如 P10/P50/P90 分析和分布图),能够更全面地了解产量波动性和不确定性。人工智能模型和概率输出相结合,为传统井型最佳拟合递减曲线方法提供了一种可靠的替代工作流程。

传统曲线拟合及其在非常规油藏中的局限性

历史上,TWP 的构建方式是汇总相关模拟井的生产历史,并创建一条与综合生产数据最吻合的产量递减曲线。该曲线以 Arps 或多段 Arps 公式表示,基于油藏的物理描述,代表用于经济评估和预测的最终产量。长期以来,行业规范一直依赖于这种工作流程,它提供了一种简化且标准化的预测方法。

然而,这种最佳拟合的准确性可能存在主观性。递减曲线分析 (DCA) 输入的初始生产点、b 因子和递减百分比,在油井早期寿命期间都会发生多次变化,根据对历史数据和模拟数据的解释,可能会被估算出截然不同的值。

如图1所示,使用最佳拟合递减法还能平滑实际产量的任何波动。这可能会低估或高估不同时间点的产量,从而对现金流产生重大影响。这种简化可能会影响依赖这些预测进行规划和投资的资产团队成员的决策。

图1——生产历史相对于下降曲线的最佳拟合。
图1——生产历史相对于下降曲线的最佳拟合。

基于百分位数的分析:更好的替代方案

最佳实践的演变之一是使用基于百分位数的方法,这种方法此前由于计算需求较大,传统上并未应用于非常规工作流程。基于百分位数的方法,例如改进时间片法(SPEE专论5),通过纳入与较高或较低产量结果相关的概率,解决了传统DCA的一些局限性。

如图 2所示,类型井概况包含基于百分位数的 TWP 产量预测视图。每个月都有单独计算的平均值(绿色实线)和百分位数预测:P10(蓝色实线)、P50(绿色实线)和 P90(红色实线)。这些值源自实际生产历史和 AI 建模的井预测。计算建模的百分位数预测值可帮助从业人员筛选出低产出和高产出,而不是单一的确定性曲线。

图2——非常规类型井剖面图,基于Arps的P10、P50和P90递减曲线。
图2——非常规类型井剖面图,基于Arps的P10、P50和P90递减曲线。

虽然改进的时间切片方法通过引入不确定性改进了传统方法,但它仍然依赖于单井随时间推移的最佳拟合预测。这可能会引入偏差,尤其是在高变异性的油藏中,并且通常需要对概率分布进行人工假设。为了克服这一局限性,一种更稳健的方法要求从业人员在将每口井的动态汇总到时间切片方法 (TWP) 之前分别预测它们,从而允许数据中自然地呈现不确定性,而不是强加预先定义的分布。

利用人工智能改善TWP开发的切实影响

人工智能与TWP开发相结合,代表着对传统方法的重大进步。蒙特卡罗模拟和基于物理的油藏模型通常成本高昂且耗时,依赖于手动定义的输入分布和油藏特性假设。相比之下,人工智能模型利用了更广泛的地质、完井和作业因素,捕捉复杂的相互依赖关系,从而生成更精确、数据驱动的预测,从而增强典型井的开发(图3)。

图3——使用数据创建不同类型的储层模型。
图3——使用数据创建不同类型的储层模型。

使用人工智能模型进行预测的一些具体优势包括:

  • 准确的短期预测——CA 在前 1 至 24 个月内难以实现,因为此时生产高度非线性,并且 b 值不断变化,从而掩盖了油井寿命最不稳定阶段的关键变化。
  • 可重复答案——传统的曲线拟合会根据分析人员的不同而产生差异。纯数据驱动的预测可确保结果的一致性和可重复性。
  • 更好的模拟井选择——我使用统计方法系统地分析大量数据集,提供一种更客观、更一致的方法来识别相关的类似物,这可以补充经验丰富的专业人士的见解。
  • 完全概率预测——与 DCA 的单一最佳拟合曲线不同,AI 模型会根据完整的概率分布生成预测,明确量化类似于蒙特卡洛模拟的不确定性。
  • 通过定期更新实现自适应学习——AI 模型会定期更新新的运营数据,并受益于 AI 技术的进步。这使得预测能够不断迭代改进,确保预测结果能够随着现场条件的不断变化而始终保持相关性。

需要注意的是,人工智能驱动的预测并不能取代工程师和资产团队的专业知识。相反,它作为一种决策支持工具,通过提供更数据驱动、更概率化的油井动态视图来增强传统的工作流程。人工智能有助于减少不确定性,但人类的判断对于有效解读和应用这些洞察仍然至关重要。

AlphaX Sky:满足现代预测需求的开箱即用解决方案

随着新技术重新定义可能性,最佳实践也在不断发展。通过将人工智能和基于百分位的预测输出纳入现金流模型,决策者可以减少不确定性,提高交易速度,提升早期生产预测的准确性,并更好地管理资产。

AlphaX Sky 通过将特定盆地的 AI 模型与传统工作流程相结合(图 4),将这些进步付诸实践,使团队能够评估各种场景并平衡风险与机遇。通过将统计严谨性与实际可用性相结合,Sky 使从业者能够做出更明智的、基于数据的决策,这是在日益复杂、数据驱动的行业中最大化资产价值的关键一步。

图 4——传统与人工智能驱动的预测工作流程。
图 4——传统与人工智能驱动的预测工作流程。

改进的切片方法采用了2012年的时间切片方法,该方法对各井的月产量进行排序,并计算百分位产量以构建典型井。改进的方法通过纳入未截断预测(这与原始方法的主要不同之处)解决了几个已发现的问题。

该工作流程的起始方式与产量平均类似:确定合适的类似物,预测未截断的产量,并将油井时间移至一个共同的参考值。它不是计算产量平均值,而是计算反映每个时间段内期望超产概率值的产量,计算方法可以是连续分布拟合、离散数据选择或最接近值之间的插值。

然后根据合理的判断对生成的配置文件进行参数化,以创建一个 TWP,其技术估计最终采收率 (EUR) 与目标百分位数 EUR 相匹配,这在处理小型或异构数据集时尤为重要。

进一步阅读

SPE 155947 非常规石油评估实用指南,2012 年, 作者:Boyd Russell、Randy Freeborn 和 Wayne Keinick。

SPEE专著5. 井型剖面实用指南(第一版,2024年12月)。石油评估工程师协会

Aruna Viswanathan是 AlphaX Decision Sciences(专注于上游油气行业的人工智能)的联合创始人/首席运营官。她的背景涵盖工程(AMD、摩托罗拉)、风险投资和技术加速。加入 AlphaX 之前,她曾担任私募股权集团 Clearspring Capital 的首席承销官/联合创始人,并多次将投资目标锁定在财富 500 强企业。她拥有德克萨斯大学奥斯汀分校电气工程学士/硕士学位和莱斯大学工商管理硕士学位。她目前担任 SPAC Texas Ventures 的董事,以及 Ecosphere Ventures、休斯顿大学访问委员会和德克萨斯大学奥斯汀分校德克萨斯创新中心的顾问。

Deb Ryan在储量和资源估算、A&D、SEC 和 PRMS 标准、公平市场估值以及储量审计方面拥有 20 多年的专业经验。她的职业生涯包括在标普全球 (S&P Global)、Sproule、MHA Petroleum Consultants、Arrow Energy 和 Woodside Energy 担任技术和领导职务。Ryan 拥有科廷大学 (Curtin University) 化学工程学士学位和石油工程硕士学位,以及宾夕法尼亚州立大学 (Penn State) 工商管理硕士学位。她是 SPEE 成员,曾任 SPE 国际董事会成员和北美区域总监,并在科罗拉多大学丹佛分校 (CU Denver Business School) 任教。

原文链接/JPT
Data & Analytics

Guest Editorial: Informing Beyond ‘Best Fit’: Rethinking Best Practices for Type Wells and Doing More With Percentiles

Best practices are not static; they evolve alongside advancements that redefine what is achievable.

Financial and economic crisis. Recession, Depression. Flip image horizontal when things get better.
Source: Bartolome Ozonas/Getty Images.

In constructing type well profiles (TWP) for oil and gas production, the traditional approach has relied on decline curve parameters to create a "best fit" for average historical production. While this method served the industry well, it inherently simplifies the nonlinear behavior of unconventional reservoirs and creates limitations (SPE 158867).

With advancements in the use of artificial intelligence (AI) models to predict future production, this best-fit simplification is no longer necessary. As the industry shifts to tighter well spacing and the development of Tier 1a and Tier 2 rock, leveraging more data to create production forecasts becomes increasingly critical.

AI-based forecasting, coupled with percentile-based methods, such as P10/P50/P90 analysis and distribution plots, enables a more comprehensive view of production variability and uncertainty. Together, AI models and probabilistic outputs provide a reliable alternative workflow to traditional best-fit decline curve approaches for type well construction.

Traditional Curve Fitting and Its Limitations in Unconventional Reservoirs

Historically, TWPs have been constructed by aggregating production histories from relevant analog wells and creating a decline curve that best fits the combined production data. This curve, expressed through Arps or multi-segment Arps formulas, is based on a physical description of the reservoir and represents the final output used in economic evaluations and forecasts. Industry norms have long relied on this workflow, which provides a streamlined and standardized approach to forecasting.

However, the accuracy of this best fit can be subjective. Decline curve analysis (DCA) inputs of initial production point, and b-factor and decline percent, both which change several times over the early life of the well, can be estimated as very different values based on the interpretation of the historical and analogue data.

The use of a best-fit decline also smooths out any variation in the actual production, as shown in Fig. 1. This can under- or over-represent production at different points in time, which can have a significant impact on cash flow. This simplification can affect decisions made by other members of the asset team who rely on these forecasts for planning and investment.

Fig. 1—Production history relative to decline curve best fit.
Fig. 1—Production history relative to decline curve best fit.

Percentile-Based Analysis: A Better Alternative

One evolution of best practices has been the use of percentile-based approaches, previously not traditionally embedded in unconventional workflows due to computational demands. Percentile-based approaches, such as the Modified Time Slice method (SPEE Monograph 5), address some of the limitations of traditional DCA by incorporating probabilities associated with higher or lower production outcomes.

As illustrated in Fig. 2, the Type Well Profile includes a percentile-based view of production forecasts for a TWP. Each month has an individually calculated mean (solid green bars) and percentile forecasts: P10 (solid blue line), P50 (solid green line), and P90 (solid red line). These values are derived from actual production history and AI‑modeled well forecasts. Calculating the modeled percentile forecasts allows practitioners to screen low and high outcomes, rather than a single deterministic curve.

Fig. 2—Unconventional type well profile with Arps-based P10, P50, and P90 decline curves.
Fig. 2—Unconventional type well profile with Arps-based P10, P50, and P90 decline curves.

While the Modified Time Slice Method improves upon traditional approaches by incorporating uncertainty, it still relies on time-shifted best-fit forecasts of individual wells. This can introduce biases, particularly in reservoirs with high variability, and often requires manual assumptions about probability distributions. To overcome this limitation, a more robust approach asks practitioners to predict each well's performance separately before aggregating them into TWPs, allowing natural uncertainty to emerge from the data rather than imposing predefined distributions.

Tangible Impacts of Using AI To Improve TWP Development

The integration of AI in TWP development represents a major advancement over traditional methods. Monte Carlo simulations and physics-based reservoir models, which are typically expensive and time-consuming to implement, depend on manually defined input distributions and assumptions about reservoir properties. In contrast, AI models leverage a broader range of geological, completion, and operational factors, capturing complex interdependencies to produce more accurate, data-driven forecasts that enhance type well development (Fig. 3).

Fig. 3—Using data to create different types of reservoir models.
Fig. 3—Using data to create different types of reservoir models.

A few of the concrete advantages of using AI models to do forecasting include:

  • Accurate Short-Term Forecasting—DCA struggles in the first 1 to 24 months when production is highly nonlinear and b-values are changing, obscuring critical variations during the most volatile phase of a well’s life.
  • Reproducible Answers—Traditional curve fitting introduces variability based on who is performing the analysis. Pure data-driven forecasts ensure consistent, repeatable results.
  • Better Analog Well Selection—AI systematically analyzes vast datasets using statistical methods, offering a more objective and consistently applied approach to identifying relevant analogs, which can complement the insights of experienced professionals.
  • Full Probabilistic Forecasting—Unlike DCA’s single best fit curve, AI models generate forecasts across a full probability distribution, explicitly quantifying uncertainty akin to Monte Carlo simulations.
  • Adaptive Learning through Periodic Updates—AI models are periodically updated with new operational data and benefit from advancements in AI technology. This allows for the iterative refinement of forecasts, ensuring they remain relevant as field conditions evolve over time.

Note that AI-driven forecasting does not replace the expertise of engineers and asset teams. Instead, it serves as a decision-support tool, enhancing traditional workflows by providing a more data‑driven and probabilistic view of well performance. AI helps reduce uncertainty, but human judgment remains crucial in interpreting and applying these insights effectively.

AlphaX Sky: An Out of the Box Solution for Modern Forecasting Needs

Best practices evolve as new technologies redefine what is possible. By incorporating AI and percentile-based forecasting outputs into cash flow models, decision-makers can reduce uncertainty, increase deal velocity, improve the accuracy of early production forecasts, and better manage their assets.

AlphaX Sky operationalizes these advancements by combining basin-specific AI models with traditional workflows (Fig. 4), enabling teams to evaluate a range of scenarios and balance risk with opportunity. By combining statistical rigor with real-world usability, Sky empowers practitioners to make more informed, data‑backed decisions—an essential step in maximizing asset value in an increasingly complex, data‑driven industry.

Fig. 4—Traditional vs. AI-driven forecasting workflow.
Fig. 4—Traditional vs. AI-driven forecasting workflow.

The Modified Slice Method adapts the 2012 Time Slice Method, which sorts monthly production rates across wells and calculates percentile rates to construct type wells. The modified approach addresses several identified issues by incorporating untruncated forecasts—a key departure from the original method.

The workflow begins in a manner similar to production averaging: identifying suitable analogs, forecasting untruncated production, and time-shifting wells to a common reference. Instead of averaging rates, it calculates production rates reflecting desired exceedance probability values for each time period, using either continuous distribution fitting, discrete data selection, or interpolation between closest values.

The resulting profile is then parameterized with sound judgment to create a TWP whose technical estimated ultimate recovery (EUR) matches the target percentile EUR, which is especially important when working with small or heterogeneous datasets.

For Further Reading

SPE 155947 A Practical Guide to Unconventional Petroleum Evaluation, 2012 by Boyd Russell, Randy Freeborn, and Wayne Keinick.

SPEE Monograph 5. A Practical Guide to Type Well Profiles (First Edition, December 2024). Society of Petroleum Evaluation Engineers

Aruna Viswanathan is co-founder/COO of AlphaX Decision Sciences (AI for upstream O&G). Her background includes engineering (AMD, Motorola), venture capital, and tech acceleration. Prior to AlphaX she was chief underwriting officer/co-founder of private equity group Clearspring Capital with multiple exits to Fortune 500 companies. She holds a BS/MS in electrical engineering from UT Austin and an MBA from Rice University. She currently serves as a director of SPAC Texas Ventures and advisor to Ecosphere Ventures, University of Houston Board of Visitors, and UT Austin’s Texas Innovation Center.

Deb Ryan has more than 20 years of expertise in reserves and resource estimations, A&D, SEC, and PRMS standards, fair market valuation, and reserves audits. Her career includes technical and leadership roles with S&P Global, Sproule, MHA Petroleum Consultants, Arrow Energy, and Woodside Energy. Ryan holds a BS in chemical engineering and an MS in petroleum engineering from Curtin University and an MBA from Penn State. She is a member of SPEE, a former SPE International Board Member and North American Regional Director, and serves on the faculty at CU Denver Business School.