非常规/复杂油藏

使用人工智能辅助图像解释来选择射孔间隔的方法

本文的作者提出了一种人工智能辅助的工作流程,使用机器学习技术来识别碳酸盐岩储层中的最佳点。

间隙填充算法的示例应用于(a)以层理平面为主的高度异构图像和(b)具有相对均匀矩阵但交叉特征结构复杂的图像。
图1'是应用于(a)以层理平面为主的高度异构图像和(b)具有相对均匀矩阵但交叉特征结构复杂的图像的间隙填充算法的示例。
资料来源:SPE 216856。

在完整的论文中,作者提出了一种人工智能 (AI) 辅助的工作流程,使用机器学习 (ML) 技术来识别碳酸盐岩储层中的最佳点。该过程涉及在主题专家 (SME) 的监督下使用井数据库对地质特征进行注释。生成的机器学习模型在新井上进行了测试,可以识别产层、射孔间隔和应力分析。该模型以像素级精度成功检测裂缝、破裂、层理面、孔洞和滑移通道,减少了钻孔图像 (BHI) 分析时间。

BHI 解释和预处理

BHI的使用需要人工解读和数据识别,严重依赖中小企业的专业知识和时间。解决这一挑战的一种广泛采用的方法是使用监督计算机视觉算法,这是人工智能的一个子领域。这些算法根据在训练期间从数据中学到的示例来优化任务函数或模型。

SPE_logo_CMYK_trans_sm.png
成为 SPE 会员继续阅读
SPE 会员:请在页面顶部登录才能访问此会员专享内容。如果您还不是会员,但发现 JPT 内容很有价值,我们鼓励您成为 SPE 会员社区的一部分,以获得完全访问权限。
原文链接/jpt
Unconventional/complex reservoirs

Approach to Perforation Interval Selection Uses AI-Assisted Image Interpretation

The authors of this paper propose an artificial-intelligence-assisted work flow that uses machine-learning techniques to identify sweet spots in carbonate reservoirs.

Examples of a gap-filling algorithm applied to (a) a highly heterogeneous image dominated by bedding planes and (b) an image with a relatively uniform matrix but a complex structure of intersecting features.
Fig. 1—Examples of a gap-filling algorithm applied to (a) a highly heterogeneous image dominated by bedding planes and (b) an image with a relatively uniform matrix but a complex structure of intersecting features.
Source: SPE 216856.

In the complete paper, the authors propose an artificial-intelligence (AI)-assisted work flow that uses machine-learning (ML) techniques to identify sweet spots in carbonate reservoirs. This process involves annotation of geologic features using a well database, with supervision from subject-matter experts (SMEs). The resulting ML model is tested on new wells and can identify pay zones, perforation intervals, and stress analysis. The models successfully detect fractures, breakouts, bedding planes, vugs, and slippage passages with pixel-level precision, reducing borehole-image (BHI) analysis time.

BHI Interpretation and Preprocessing

The use of BHIs requires manual interpretation and data identification, heavily relying on the expertise and time of SMEs. A widely adopted approach to address this challenge is the use of supervised computer-vision algorithms, a subfield of AI. These algorithms optimize the task function or model based on examples they have learned from data during training.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.