增强恢复

EOR建模-2025

CO2 增强采油 (EOR) 是一种极具吸引力且已在商业上得到认可的地下 CO2 封存技术。EOR 建模至关重要,因为需要复杂的模拟来预测 CO2 的行为及其与石油和储层岩石的相互作用。

JPT_2025-01_EORFocus.jpg

大多数全球大型石油和天然气公司都致力于实施脱碳战略,以减少碳足迹并努力实现减缓气候变化的目标。这些承诺包括使用可再生能源、提高能源效率以及开发能够捕获和储存碳排放的技术。即使做出了这样的承诺,受人口增长、工业化和经济进步的推动,全球能源需求仍在继续增长。这些承诺意义重大,因为它们具有高能量密度和现有的基础设施。

提高石油采收率 (EOR) 技术,尤其是那些涉及二氧化碳注入(CO 2 -EOR) 的技术,可以弥补当前能源需求与未来可再生能源采用之间的差距。CO 2 -EOR 可最大限度地提高石油采收率,并提供一种有吸引力且商业上成熟的地下封存二氧化碳的技术

EOR 建模至关重要,因为需要复杂的模拟来预测 CO 2的行为及其与石油和储层岩石的相互作用。数据驱动方法、机器学习和人工智能的近期快速发展可以增强 EOR 建模,从而提高预测 CO 2 -EOR 过程的速度、稳健性和准确性

预测准确性的提高可能会带来更高效、更具成本效益和更可持续的 EOR 流程,确保石油工业能够满足日益增长的全球能源需求,同时减少对环境的影响。

本月的技术论文

机器学习可实现数据驱动的 CO2 EOR 数值研究预测

物理信息机器学习可改善 CO2 EOR 的预测和连通性识别

人工智能方法提高二氧化碳最小混溶压力预测精度

推荐阅读

OTC 35456 利用机器学习优化 CO2-WAG 驱油以提高采收率和碳储存, 作者:Peng Qi、SLB 等人

SPE 218284 考虑二氧化碳驱油和封存时空序列预测的 CO2-EOR 策略联合优化, 作者:中国石油大学庄新宇等人

SPE 218206 评估未来在丹佛市油田注入二氧化碳以提高采收率和二氧化碳储存的效果, 作者:休斯顿大学的 Muhammad Haseeb Mukhtar 等人

Luky Hendraningrat, SPE,是马来西亚国家石油公司的油藏技术高级科学家。他拥有挪威科技大学提高采收率(纳米颗粒)博士学位。Hendraningrat 拥有 20 多年的石油和天然气经验。他的研究兴趣是提高采收率、压力/体积/温度分析和油藏建模。Hendraningrat 发表了 60 多篇技术论文。他曾多次在 SPE 活动的技术项目委员会担任志愿者,并获得了 2024 年 SPE 地区服务奖。

原文链接/JPT
Enhanced recovery

EOR Modeling-2025

CO₂ enhanced oil recovery (EOR) provides an attractive and commercially established technique to store CO₂ underground. EOR modeling is crucial because complex simulation is required to predict the behavior of CO₂ and its interaction with the oil and reservoir rock.

JPT_2025-01_EORFocus.jpg

Most major global oil and gas companies have committed themselves to decarbonization strategies that reduce the carbon footprint and work toward the goals of climate-change mitigation. These commitments include the use of renewable energy sources, improvements in energy efficiency, and development of technologies that can capture and store carbon emissions. Even with such commitments, energy demand continues to rise globally, driven by population growth, industrialization, and economic progress. These are significant because they have a high energy density and an existing infrastructure.

Enhanced oil recovery (EOR) techniques, particularly those involving CO2 injection (CO2‑EOR), can bridge the gap between current energy needs and future renewable energy adoption. CO2-EOR maximizes oil recovery and provides an attractive and commercially established technique to store CO2 underground.

EOR modeling is crucial because complex simulation is required to predict the behavior of CO2 and its interaction with the oil and reservoir rock. EOR modeling can be enhanced by recent and rapid developments in data-driven approaches, machine learning, and artificial intelligence to improve speed, robustness, and accuracy in predicting CO2-EOR processes.

Such enhancement in predictive accuracy may lead to more-efficient, cost-effective, and sustainable EOR processes, ensuring that the oil industry is capable of meeting growing global energy demand with reduced environmental impact.

This Month’s Technical Papers

Machine Learning Enables Data-Driven Predictions of CO2 EOR Numerical Studies

Physics-Informed ML Improves Forecasting, Connectivity Identification for CO2 EOR

AI Approach Advances Predictive Precision in CO2 Minimum Miscibility Pressure

Recommended Additional Reading

OTC 35456 Leveraging Machine Learning To Optimize CO2-WAG Flooding for Enhanced Oil Recovery and Carbon Storage by Peng Qi, SLB, et al.

SPE 218284 Co-Optimization of CO2-EOR Strategies Considering the Spatiotemporal Sequence Prediction of CO2 Flooding and Sequestration by Xinyu Zhuang, China University of Petroleum, et al.

SPE 218206 Evaluation of Future CO2 Injection in Denver City Field for Enhanced Oil Recovery and CO2 Storage by Muhammad Haseeb Mukhtar, University of Houston, et al.

Luky Hendraningrat, SPE, is a senior scientist in reservoir technology at Petronas. He holds a doctoral degree in enhanced oil recovery (nanoparticles) from the Norwegian University of Science and Technology. Hendraningrat has more than 20 years of oil and gas experience. His research interests are improved/enhanced oil recovery, pressure/volume/temperature analysis, and reservoir modeling. Hendraningrat has published more than 60 technical papers. He has volunteered on technical program committees for multiple SPE events and is a 2024 SPE Regional Service Award recipient.