SPE 新闻

岩心尺度平流为主多孔介质中两相流化学示踪剂的建模

进行基础研究,推导出双相流多孔介质中理想和分配示踪剂的传输模型,该模型将能够快速有效地表征和选择用于现场应用的正确示踪剂。

粒子流动 大数据形象化 数字技术浪潮 未来派网际空间 抽象网络安全背景 3d 翻译
资料来源:Mykola Lishchyshyn/Getty Images

多孔介质中的化学示踪剂建模在地下应用中起着关键作用,包括石油回收、含水层修复和地热能生产。在油藏中,化学示踪剂对于量化置换过程后多孔介质中的剩余油饱和度至关重要,从而能够正确评估油田规模的采油方法的波及效率。

尽管单相流下溶质的迁移已得到广泛建模,并具有多种解决方案,但目前尚无数学方法来研究两相流条件下溶质的位移。因此,我们在这项研究工作中提出了第一个分析解决方案,用于模拟具有流动水相和油相的多孔介质中理想和分配示踪剂的迁移。

所提出的模型源自粘性力对流体置换的经典研究和对多孔介质中动态相分布的分析,其中引入了关键转换变量,以将非线性对流/扩散方程简化为传统的偏微分表达式。

在我们的推导过程中,我们认识到,可以通过奇异摄动展开将弥散效应叠加到理想的浓度前沿上,从而得到不需要复杂数值计算或反演方法的实际解。

所得到的解通过数值模拟进行验证,并通过不同流动条件下理想示踪剂和分离示踪剂输送的实验数据进行验证,表明在两相流下,流体动力学分散、分离和吸附的复杂机制可以准确建模。因此,我们的解可用于快速评估多孔介质中现有流动条件下的示踪剂输送,从而大大减少表征和选择用于现场应用的正确示踪剂所需的实验和模拟次数。


本摘要摘自德克萨斯大学奥斯汀分校和洛斯阿拉莫斯国家实验室的 M. Velasco-Lozano、德克萨斯大学奥斯汀分校的 MT Balhoff 以及墨西哥国立自治大学的 LE Diaz-Paulino、S. Lopez-Ramirez 和 R. Galvan-Castro 撰写的论文 SPE 219730。该论文已通过同行评审,可在 OnePetro 上的 SPE 期刊上以开放获取形式获取。

原文链接/JPT
SPE News

Modeling of Chemical Tracers for Two-Phase Flow in Advective-Dominated Porous Media at Core Scale

Fundamental research conducted to derive a transport model for ideal and partitioning tracers in porous media with two-phase flow that will allow fast and efficient characterization and selection of the correct tracer to be used in field applications.

Flow of particles. Big data visualization. Digital technology wave. Futuristic cyberspace. Abstract cyber security background. 3D rendering.
Source: Mykola Lishchyshyn/Getty Images

Chemical tracer modeling in porous media plays a key role in subsurface applications including oil recovery, aquifer remediation, and geothermal energy production. In oil reservoirs, chemical tracers are critical to quantifying the remaining oil saturation in porous media after displacing processes, enabling the correct evaluation of the sweep efficiency of recovery methods at the field scale.

Even though the transport of solutes under single-phase flow has been modeled extensively with numerous solutions, there are no existing mathematical approaches to examine the displacement of solutes in two-phase flow conditions. Therefore, we present in this research work the first analytical solutions derived to model the transport of ideal and partitioning tracers in porous media with mobile water and oil phases.

The models presented are derived from the classic study of fluid displacement by viscous forces and the analysis of dynamic phase distribution in porous media, where key transformation variables are introduced to simplify the nonlinear advection/dispersion equation into a conventional partial differential expression.

In our derivation process, it is recognized that the dispersion effect can be superimposed onto an ideal concentration front via a singular perturbation expansion, resulting in practical solutions that do not require complex numerical calculations or inversion methods.

The solutions derived are verified with numerical simulations and validated with experimental data under different flow conditions for the transport of ideal and partitioning tracers, demonstrating that the complex mechanisms of hydrodynamic dispersion, partitioning, and adsorption are accurately modeled under two-phase flow. Thus, our solutions can be used to rapidly evaluate tracer transport under the existing flow conditions in porous media, significantly reducing the number of experiments and simulations to characterize and select the correct tracer to be used in field applications.


This abstract is taken from paper SPE 219730 by M. Velasco-Lozano, University of Texas at Austin and Los Alamos National Laboratory; M. T. Balhoff, University of Texas at Austin; and L. E. Diaz-Paulino, S. Lopez-Ramirez, and R. Galvan-Castro, UNAM. The paper has been peer reviewed and is available as Open Access in SPE Journal on OnePetro.