现场/项目开发

二氧化碳、天然气和氢气储存-2025

向低碳经济转型需要大规模的二氧化碳、天然气和氢气储存。在此背景下,应用 AI/ML 技术揭示与储存相关的地球化学、微生物、地质力学和水力机制,解决复杂的历史匹配和优化问题,从而提高储存效率,在最近的出版物中得到了突出的体现。

JPT_2025-03_COFocus.jpg

目前影响该行业的两个重要趋势是向低碳经济转型以及整合人工智能 (AI) 和机器学习 (ML) 以彻底改变设计和运营流程。向低碳经济转型需要大规模的二氧化碳、天然气和氢气储存。在此背景下,应用 AI/ML 技术揭示与储存相关的地球化学、微生物、地质力学和水力机制,解决复杂的历史匹配和优化问题,从而提高储存效率,在最近的出版物中得到了突出介绍。

尽管氢能仍处于起步阶段,但预计它将在向低碳经济转型中发挥关键作用。由于其丰富的存储容量和广泛的分布,地下氢存储(尤其是多孔介质中的氢存储)对于解决供需之间的空间和时间不平衡至关重要。通过优化具有技术和经济效率的存储开发计划,AI/ML 正在成为扩大地下氢存储规模的催化剂。

碳储存技术相对成熟,已从全球众多试点项目和正在进行的商业规模项目中获得了大量知识。其主要重点是利用最新技术,尤其是人工智能和机器学习,通过更智能、更自动化的地质建模、数值模拟和历史匹配方式来提高性能并降低成本。

此外,为了有效应对低碳能源结构的动态需求并提高整体经济效益,人们开始重视存储站点的重新利用和多用途化(例如,将天然气存储转换为氢气存储),从而模糊了不同存储介质的存储站点之间的界限。

展望未来,很明显的是,碳、氢和天然气的储存业务,即低碳时代的所谓“仓库业务”,将成为全球能源转型的重要支柱,而人工智能/机器学习将加速这一进程。

本月的技术论文

工作流程实现含水层地下氢储存的技术经济优化

模型简化和数据同化方法增强二氧化碳羽流追踪

多孔地下储气库可快速为电网提供多种服务

推荐阅读

SPE 220865 使用基于油藏模拟和深度学习加速优化方法优化地下氢存储, 作者:德克萨斯大学奥斯汀分校的 Esmail Eltahan 等人

SPE 220026 二氧化碳地质储存井位优化和井控优化的无梯度优化方法性能比较, 作者:Imaobong Tom(塔尔萨大学)等人

SPE 222120 MAGCS:机器辅助地质碳储存, 作者:HM Alqassab、埃克森美孚等。

邱凯斌, SPE,是 SLB 的地质力学顾问。他在该行业拥有 20 多年的经验,并参与过马来西亚、伊朗、埃及、利比亚、印度、印度尼西亚、日本、韩国和中国的多个咨询项目。邱凯斌拥有中国清华大学水利水电工程学士学位和岩土工程硕士学位。近年来,他一直致力于将储层地质力学应用于高压/高温储层、深水、致密油、致密气、页岩气和甲烷水合物的勘探和开发。除了地质力学之外,邱凯斌还专攻钻井工程,将地震与非常规油气增产解决方案相结合,碳捕获和储存以及地热。他撰写了 40 多篇技术论文。邱凯斌是同行评审的SPE 期刊的执行编辑。他还是JPT编辑评审委员会的成员。

原文链接/JPT
Field/project development

CO2, Natural Gas, and Hydrogen Storage-2025

Transitioning to a low-carbon economy demands large-scale CO2, natural gas, and hydrogen storage. In this context, the application of AI/ML technology to uncover geochemical, microbial, geomechanical, and hydraulic mechanisms related to storage and solve complicated history-matching and optimization problems, thereby enhancing storage efficiency, has been prominently featured in recent publications.

JPT_2025-03_COFocus.jpg

Two significant trends currently shaping the industry are transitioning to a low-carbon economy and integrating artificial intelligence (AI) and machine learning (ML) to revolutionize design and operational processes. Transitioning to a low-carbon economy demands large-scale CO2, natural gas, and hydrogen storage. In this context, the application of AI/ML technology to uncover geochemical, microbial, geomechanical, and hydraulic mechanisms related to storage and solve complicated history-matching and optimization problems, thereby enhancing storage efficiency, has been prominently featured in recent publications.

Although still in the infancy stage, hydrogen is expected to play a pivotal role in the transition to a low-carbon economy. Thanks to its abundant storage capacity and widespread distribution, subsurface hydrogen storage, especially in porous media, is crucial for addressing the spatial and temporal imbalances between supply and demand. By optimizing storage-development plans with technical and economical efficiency, AI/ML is becoming a catalyst for scaling up subsurface hydrogen storage.

Carbon storage is relatively mature, with substantial knowledge gained from numerous pilot projects and ongoing commercial-scale projects worldwide. Its primary focus is leveraging the latest technologies, particularly AI and ML, to enhance performance and reduce cost through a smarter and more-automatic way of geological modeling, numerical simulation, and history‑matching.

Furthermore, to cope efficiently with the dynamic demand of a low-carbon energy mix and improve overall economics, an emphasis on repurposing and multipurposing storage sites (for example, converting natural gas storage to hydrogen storage) is emerging, blurring the boundary of storage sites with different storage media.

Looking forward, it is clear that the storage operations of carbon, hydrogen, and natural gas, the so-called “warehouse business” in the low‑carbon era, will become an important pillar for the global energy transition, with AI/ML accelerating the process.

This Month’s Technical Papers

Workflow Enables Technoeconomic Optimization of Underground Hydrogen Storage in Aquifers

Model-Reduction and Data-Assimilation Approach Enhances Carbon-Dioxide Plume Tracking

Porous Underground Gas Storage Can Rapidly Provide Multiple Services to the Grid

Recommended Additional Reading

SPE 220865 Optimizing Hydrogen Storage in the Subsurface Using a Reservoir-Simulation-Based and Deep‑Learning-Accelerated Optimization Method by Esmail Eltahan, The University of Texas at Austin, et al.

SPE 220026 Performance Comparison of Gradient-Free Optimization Methods for Well Placement and Well-Control Optimization for Geologic CO2 Storage by Imaobong Tom, University of Tulsa, et al.

SPE 222120 MAGCS: Machine-Assisted Geologic Carbon Storage by H.M. Alqassab, ExxonMobil, et al.

Kaibin Qiu, SPE, is a geomechanics adviser at SLB. He has more than 20 years of experience in the industry and has worked on many consulting projects in Malaysia, Iran, Egypt, Libya, India, Indonesia, Japan, Korea, and China. Qiu holds a BS degree in hydraulic and hydropower engineering and an MS degree in geotechnical engineering, both from Tsinghua University in China. In recent years, he has been involved in applying reservoir geomechanics for the exploration and development of high-pressure/high-temperature reservoirs, deep water, tight oil, tight gas, shale gas, and methane hydrate. Beyond geomechanics, Qiu also specializes in drilling engineering, integrating seismic to stimulation solutions for unconventionals, carbon capture and storage, and geothermal. He has authored more than 40 technical papers. Qiu is an Executive Editor for the peer-reviewed SPE Journal. He is also a member of the JPT Editorial Review Board.