地震断层圈定机器学习的先进趋势

结合机器学习方法来产生最佳的故障解释。

(来源:地球物理洞察)

提出者:

勘探与生产标志

编者注:本文发表在 E&P 时事通讯中。在这里订阅 


在过去的几年中,机器学习(一种人工智能)在地震数据解释中的应用有所增加。 

两种主要的机器学习应用包括监督学习方法和无监督学习方法。监督学习采用一组已知的描述符或标签来表示已知的响应,并训练一个模型,该模型应用于新数据以获得合理的结果。在无监督学习中,没有数据的先验知识,并且训练适应识别自然模式和聚类的数据。 

本文专门讨论了机器学习在地震断层圈定中的应用。 

解释地震数据上的断层 

解释地震数据所需的关键过程是定义断层的存在及其区域分布和网络。断层是沉积物或岩柱中相对的岩壁相互移动的位移。断层对于了解地质结构、储层密封完整性、油田分区、运移流动路径和潜在钻井危险至关重要。断层通常在地震数据上被识别为反射不连续性。传统上,3D 地震数据上的断层是由解释人员根据当地地质的经验和知识手动挑选的。这通常是一个极其耗时的过程并且非常主观。

从 20 世纪 90 年代中期开始,揭示地震反射连续性和不连续性的地震属性逐渐演变为相似性、相干性、曲率和方差等名称。这些地震属性有助于更好地定义地震数据中的断层,但会受到地层变化和噪声的影响,并且仍然需要解释人员手动挑选。 

CNN 描绘故障

随着过去二十年计算机能力的增强,机器学习已成为解释 3D 地震数据断层的可行方法。 

一种称为卷积神经网络 (CNN) 的监督深度学习方法已经发展到可以在描述故障方面提供出色的结果。由于 CNN 是一个监督学习过程,因此必须输入所选故障的标签或示例来构建机器学习模型。如果口译员选择错误标签进行培训,时间和口译员偏见问题将再次发挥作用。此外,很难知道解释器必须找出多少错误才能产生可​​行的机器学习模型。

越来越多的证据(Wu et al., 2019;Qie et al., 2020)表明,生成训练数据的替代方法可以产生更好、更快的结果。这涉及生成具有完全断层 3D 合成地震振幅体的训练数据。由于训练数据是合成的,准确的故障解决方案被输入到机器学习模型中,消除了解释者的主观性并产生更准确的结果。由于合成模型是 3D,因此不存在与某些内线或交叉线上的标记错误相关的问题。机器学习模型已经建立并构建,因此应用程序可以很快地描述故障。添加数据的预处理和后处理可产生增强的 CNN 故障检测结果。 

图 1 显示了使用 U-net 卷积神经网络架构(采用 3D 合成地震数据)描绘断层的机器学习工作流程。  

地球物理见解
图 1. 这种基于 CNN 的故障检测工作流程包括地震数据预处理、基于 CNN 的故障概率计算和故障图像后处理。(来源:地球物理洞察)

图 2a 显示了 3D 地震振幅线,其中断层已由 U-Net CNN 架构预测。图 2b 在 RGB 显示中显示了相同的线路和相关故障,其中三种颜色描绘了数据中不同的有限频带。图 2 显示了幅度和 RGB 数据的清晰故障描述。然而,当断层深入沉积物柱且地层变化复杂且不一致时,解释仍然存在局限性。  

地球物理见解   

地球物理见解
图 2.
图 2a(上)描绘了 Paradise 软件中显示的新西兰近海地震振幅线,并显示了 CNN 断层检测概率。图 2b(底部)描绘了以 RGB 格式显示的同一行以及相关的 CNN 检测到的故障。RGB 显示所采用的三个光谱分解频带包含 15、35 和 65 Hz 的中心频率。(数据由新西兰石油和矿产局 (NZPM) 提供;图表由 Geophysical Insights 提供)

结合监督和无监督机器学习 

为了改进 3D CNN 故障结果的解释,采用了一种称为自组织映射 (SOM) 的无监督机器学习神经网络方法。SOM 有效地结合多个地震属性来确定数据中的自然模式和聚类。这些模式或簇可以识别地下地质和地层的变化(Roy等,2013;Zhao等,2015)。这些模式由二维彩色图中的神经元识别。因此,在 SOM 分析中结合适当的地震属性集来定义地层学和 CNN 断层概率体积可产生高分辨率地层学和相与断层线形相关的结果。 

事实证明,SOM 在以比传统地震振幅数据更高的分辨率定义详细地层和相方面非常成功(Roden 等,2017),因此该过程能够隔离特定断块中的断层,并在某些情况下解释断层井筒中的切口。 

图 3a 显示了一条 3D 地震线,其中包含相对较浅的复杂多边形断层的广泛断层、具有较大且不同趋势偏移的中间部分以及断层趋势难以仅与振幅数据关联的较深部分。图 3b 显示了 SOM 分析中的同一行,其中用于定义地层学的八个瞬时属性与 CNN 故障概率体积的结果一起运行。 

地球物理见解

地球物理见解
图 3. 
图 3a(上)显示了 Paradise 软件显示的新西兰近海地震振幅线,表示各种复杂的断层趋势。图 3b(底部)显示了与 SOM 结果相同的线条,该结果结合了八个瞬时属性,用一个 CNN 故障检测结果来定义地层学。(数据由新西兰石油和矿产局 (NZPM) 提供;图表由 Geophysical Insights 提供)

2D 彩色图(图 4)显示 64 个神经元,其中每个神经元代表数据中的不同模式。CNN 故障概率体识别的故障与右下角的四个神经元相关联,并在 2D 彩色图上圈出。 

地球物理见解
图 4. 2D 颜色图上圈出的四个神经元定义了 CNN 输入的错误。(数据由新西兰石油和矿产局 (NZPM) 提供;图表由 Geophysical Insights 提供)

通过比较这些显示,可以明显看出,不仅地层学的定义更加清晰,尤其是在剖面的较深部分,而且与地层学相关的断层相关性使地球科学家能够做出更准确的解释。


相关内容:

2021 年 8 月 3 日 通过定量地震分析释放成熟地区的潜力

2021 年 7 月 26 日 AI 和超长偏移更新 Utsira OBN 的故事

2021 年 7 月 23 日 可视化平台打造现场服务项目管理新面貌

2021 年 7 月 20 日 解读地下数据的字里行间

2021 年 7 月 13 日 探索:利用数字化最大化现场成果

2021 年 6 月 22 日 根据地震数据预测岩石地质力学特性

2021年6月14日 人工智能平台加速油藏机会识别

2021 年 6 月 7 日 岩石物理诊断:成功建模的先决条件

原文链接/hartenergy

Advanced Trends in Machine Learning for Seismic Fault Delineation

Combining machine learning approaches to produce optimum fault interpretation.

(Source: Geophysical Insights)

Presented by:

E&P logo

Editor's note: This article appears in the E&P newsletter. Subscribe here.


Over the last few years, there has been an increase in the application of machine learning, a type of artificial intelligence, in the interpretation of seismic data. 

The two primary machine learning applications include supervised and unsupervised learning approaches. Supervised learning takes a known set of descriptors or labels to known responses and trains a model, which is applied to new data to get reasonable results. In unsupervised learning, there is no prior knowledge of the data, and training adapts to the data identifying natural patterns and clusters. 

This article specifically addresses the application of machine learning to seismic fault delineation. 

Interpreting faults on seismic data 

A key process necessary in interpreting seismic data is defining the presence of faults and their areal distribution and network.  Faults are displacements in the sediment or rock column where the opposite walls have moved past each other. Faults are essential in understanding the geologic structure, reservoir seal integrity, field compartmentalization, migration flow paths and potential drilling hazards. Faults are usually recognized on seismic data as reflection discontinuities. Traditionally, faults on 3D seismic data have been manually picked by interpreters based on their experience and knowledge of the local geology. This is typically an extremely time-consuming process and highly subjective.

Beginning in the mid-1990s, seismic attributes that reveal seismic reflection continuities and discontinuities evolved with names such as semblance, coherency, curvature and variance.  These seismic attributes helped better define faults in the seismic data but were subject to stratigraphic variations and noise, and they still required manual picking by interpreters. 

CNN to delineate faults

As computer power increased over the last two decades, machine learning has become a viable approach to interpret faults on 3D seismic data. 

A supervised deep learning approach called convolutional neural networks (CNN) has evolved to provide excellent results in delineating faults. Since CNN is a supervised learning process, labels or examples of picked faults must be input to build the machine learning model. If interpreters are picking the fault labels for training, the issues of time and interpreter bias come into play again. In addition, it is difficult to know how many faults must be picked by the interpreter sufficient to produce a viable machine learning model.

There is a growing body of evidence (Wu et al., 2019; Qie et al., 2020) that an alternative method to generate training data can produce better and faster results. This involves the generation of training data with fully faulted 3D synthetic seismic amplitude volumes. Because the training data is synthetic, the exact fault solution is input into the machine learning model, eliminating interpreter subjectivity and producing a more accurate result. Since the synthetic model is 3D, there are no issues related to labeling faults on certain inlines or crosslines. The machine learning model is already established and built, so the application delineates faults quite quickly. The addition of pre- and post-conditioning of the data produces an enhanced CNN fault detection result. 

Figure 1 displays the machine learning workflow described for delineating faults using a U-net convolutional neural network architecture employing 3D synthetic seismic data.  

Geophysical Insights
FIGURE 1. This CNN-based fault detection workflow includes seismic data pre-conditioning, CNN-based fault probability computation and fault image post-processing. (Source: Geophysical Insights)

Figure 2a displays a 3D seismic amplitude line where the faults have been predicted by a U-Net CNN architecture. Figure 2b displays the same line and associated faults in a RGB display, where the three colors depict different limited frequency bands in the data. Figure 2 shows clear fault delineations on amplitude and RGB data. However, there are still interpretation limitations when faults extend deep in the sediment column and stratigraphic variations are complicated and inconsistent.  

Geophysical Insights   

Geophysical Insights
FIGURE 2.
Figure 2a (top) depicts the seismic amplitude line from offshore New Zealand displayed in Paradise software with the CNN fault detection probability displayed. Figure 2b (bottom) depicts the same line displayed in RGB format with associated CNN detected faults. The three spectral decomposition bands employed for the RGB display contain central frequencies of 15, 35 and 65 Hz. (Data courtesy of New Zealand Petroleum and Minerals (NZPM); Figures courtesy of Geophysical Insights)

Combining supervised and unsupervised machine learning 

To improve the interpretation of the 3D CNN fault results, an unsupervised machine learning neural network methodology called self-organizing maps (SOM) is employed. SOM efficiently combines multiple seismic attributes to determine natural patterns and clusters in the data. These patterns or clusters can identify variations in the subsurface geology and stratigraphy (Roy et al., 2013; Zhao et al., 2015). These patterns are identified by neurons in a 2D color map. Therefore, combining in a SOM analysis the appropriate set of seismic attributes to define stratigraphy and the CNN fault probability volumes produces results where high-resolution stratigraphy and facies can be correlated with the fault lineaments. 

SOM has proven to be quite successful in defining detailed stratigraphy and facies at higher resolution than conventional seismic amplitude data (Roden et al., 2017), so this process enables the isolation of faults in specific fault blocks and in some cases the interpretation of fault cuts in wellbores. 

Figure 3a displays a 3D seismic line with extensive faulting from complex polygonal faulting relatively shallow, a middle section with larger and different trending offsets, and a deeper section where the fault trends are difficult to correlate on the amplitude data alone. Figure 3b displays the same line from the SOM analysis where eight instantaneous attributes used to define stratigraphy are run with the results from the CNN fault probability volume. 

Geophysical Insights

Geophysical Insights
FIGURE 3. 
Figure 3a (top) shows a Paradise software display of a seismic amplitude line from offshore New Zealand denoting various complicated fault trends. Figure 3b (bottom) shows the same line with SOM results that have combined eight instantaneous attributes to define stratigraphy with one CNN fault detection result. (Data courtesy of New Zealand Petroleum and Minerals (NZPM); Figures courtesy of Geophysical Insights)

The 2D color map (Figure 4) displays 64 neurons, where each neuron represents a different pattern in the data. The faults identified by the CNN fault probability volume are associated with the four neurons in the bottom right and circled on the 2D color map. 

Geophysical Insights
FIGURE 4. The circled four neurons on the 2D colormap define the faults from the CNN input. (Data courtesy of New Zealand Petroleum and Minerals (NZPM); Figures courtesy of Geophysical Insights)

It is evident in comparing these displays that not only is the stratigraphy more clearly defined, especially in the deeper parts of the section, but the fault correlations tied to the stratigraphy enables geoscientists to make a more accurate interpretation.


RELATED CONTENT:

Aug. 3, 2021 Unlocking the Potential of Mature Areas with Quantitative Seismic Analysis

July 26, 2021 AI and Ultralong Offsets Updating the Story of Utsira OBN

July 23, 2021 Visualization Platforms Create a New Look for Field Services Project Management

July 20, 2021 Reading Between the Lines of Subsurface Data

July 13, 2021 Exploration: Leveraging Digitalization to Maximize Results in the Field

June 22, 2021 Geomechanical Rock Properties Prediction from Seismic Data

June 14, 2021 Artificial Intelligence Platform Accelerates Reservoir Opportunity Identification

June 7, 2021 Rock Physics Diagnostics: A Prerequisite for Successful Modeling