油藏模拟

多变量表征、古带建模改进了历史匹配

本文的作者提出了一种在双孔隙度/双渗透率模型的历史匹配研究中整合古带特征、古带电导率参数化以及流动剖面应用的方法。

左:古带的面积变化。 右:古地区的横截面。
图1-左:古带面积变化。右:古地区的横截面。

古带经常存在于自由水位 (FWL) 表面以下,它的存在可能会影响油藏模拟模型的动态调节。在整篇论文中,作者提出了一种方法,该方法综合了古带特征、古带电导率参数化以及流动剖面的应用,作为大规模双孔隙/双孔隙加速历史匹配研究的指导。渗透率模型。古区电导率概率参数化方法有助于建立高质量的模型,并提供具有加速时间可靠预测能力的储层模拟模型。

方法和模型

古带地质模型。构造生长证明了充填历史和区域倾斜发生的位移,在当前 FWL 以下的孔隙系统中留下了残留(或古)石油的记录。适用的饱和度高度模型是基于专用岩心岩石物理岩石定型并结合强大的 FWL 和古石油 FWL 反演而生成的,该过程允许再现从测井(不受生产影响的原始测井)和含油饱和度尾部如 FWL 下方所示。

本文提出的方法背后的主要方法包括通过模拟 FWL 和古石油 FWL 表面来确定古石油体积,定义储层内相应的古区域,以及动态评估含水层、古石油和地下蓄水层之间的连通。石油区;这两个表面来自饱和高度函数的反演过程。

当前将影响储层动态条件的最重要变量(辅助历史匹配、不确定性量化、多变量参数化以及静态和动态校准)纳入储层中的进展,允许对一些被忽视的参数(包括古参数)进行纳入和敏感性研究。 -石油表征、建模和模拟。

调整古地区内的岩石物理性质。古石油区域内的岩石物理特性(孔隙度和渗透率)是根据测井解释的总水体积(BVW)进行建模的。BVW 越高,油段和含水层之间有效连通的机会就越大。

SPE_logo_CMYK_trans_sm.png
成为 SPE 会员继续阅读
SPE 会员:请在页面顶部登录才能访问此会员专享内容。如果您还不是会员,但发现 JPT 内容很有价值,我们鼓励您成为 SPE 会员社区的一部分,以获得完全访问权限。
原文链接/jpt
Reservoir simulation

Multivariate Characterization, Modeling of Paleo Zone Improves History Matching

The authors of this paper present an approach integrating characterization of paleo zones, parameterization of paleo-zone conductivity, and application of flow profiles in a history-matching study of a dual-porosity/dual-permeability model.

Left: Areal variation of paleo zone. Right: Cross section of paleo region.
Fig. 1—Left: Areal variation of paleo zone. Right: Cross section of paleo region.

The presence of a paleo zone, which frequently exists below free-water-level (FWL) surfaces, can affect dynamic reconciliation of reservoir simulation models. In the complete paper, the authors present an approach that integrates characterization of paleo zones, parameterization of paleo-zone conductivity, and application of flow profiles as a guide in an accelerated history-matching study of a large-scale dual-porosity/dual-permeability model. The approach to probabilistic parameterization of paleo-zone conductivity has contributed to a model with high quality and rendered a reservoir simulation model with reliable predictive capability in accelerated time.

Methods and Models

Geological Modeling of Paleo Zone. Structural growth evidences the filling history and displacement occurred by regional tilting, stamping a record of relic (or paleo) oil in the pore system below the current FWL. Applicable saturation-height models are generated based on dedicated core petrophysical rock typing in conjunction with a robust FWL and paleo-oil FWL inversion, a process that allows reproduction of the saturation profile as seen from logs (original logs not affected by production) and the oil-saturation tail as seen below the FWL.

The primary methodology behind the approach presented in the paper consists of determining the volume of paleo oil by modeling FWL and paleo-oil FWL surfaces, defining the corresponding paleo zone within the reservoir, and dynamic evaluation of communication between the aquifer, paleo oil, and oil zones; the two surfaces come from an inversion process of the saturation height function.

Current developments for the incorporation of the most-important variables affecting dynamic conditions (assisted history matching, uncertainty quantification, multivariate parameterization, and static and dynamic calibration) in the reservoir have allowed incorporation of, and sensitivity studies of, some overlooked parameters, including paleo-oil characterization, modeling, and simulation.

Adjusting Petrophysical Properties Inside the Paleo Regions. Petrophysical properties (porosity and permeability) inside the paleo-oil region are modeled based on the bulk volume of water (BVW) from log interpretation. The higher the BVW, the higher the chance of effective communication between the oil leg and the aquifer.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.