人工智能平台加速油藏机会识别

如今基于人工智能的云技术旨在帮助石油和天然气运营商在油藏管理和油田开发规划领域实施实用的数字化战略。

(来源:QRI集团)

提出者:

勘探与生产标志

编者注:本文出现在新的 E&P 时事通讯中。请在此处订阅勘探与生产通讯 。 


成功的油藏管理通常需要确定可行的油田开发机会。这一过程的结果有助于资产团队实现生产目标并提高采收效率和储量。油田开发规划通常需要在深入了解目标油藏(地质复杂性、生产历史等)的基础上进行多学科协作。因此,传统方法历来耗时耗力,需要大量人力进行数据收集、分析以及审核结果。 

如今,支持人工智能 (AI) 的云原生平台可以快速有效地识别油藏机会。该工具基于应用于多学科数据集的先进人工智能/机器学习 (ML) 算法而构建。它简化了多个复杂的地质和工程工作流程,例如绕过付费识别、排水分析、产量预测等。此外,通过智能集成不同的数据源(例如测井记录、油藏模型以及生产和完井数据),它可以实现新的跨职能工作流程。最终目标是生成可操作机会(再完井、最佳点、水平井)的排名目录,使资产团队能够协作评估油田开发前景。通过利用云计算的创新框架,多场景分析变得实用,并带来更好的风险管理和更短的油藏管理决策周期。

稳健的方法和简化的地质和工程工作流程

该技术可以智能地自动化许多典型的劳动密集型工作流程,以寻找重新完井、最佳点或水平井场机会。在进行实际分析之前,以灵活的标准和格式输入多学科数据,包括Energistics RESQML数据格式。图 1 说明了可以集成的不同数据源。

图 1. 多学科数据的整合

QRI
(来源:QRI)

将数据上传到数据集管理器后,将检查每个数据类别的数据有效性。此外,该平台还交叉检查多学科数据,以检查不同数据源之间的兼容性。数据验证后,机会识别工作流程开始。它由几个关键组件组成:

  • 工程分析: 它自动执行接触分析和流动单元分配,以利用多个数据源(例如产量、完井、射孔、流体特性和 PLT/ILT 信息)为每口井分配每个区域的产量,并使用以下方法执行递减曲线分析:使用无监督学习进行基于人工智能的事件检测和类型曲线生成;
  • 剩余产层识别:它使用产层连通性分析、挡板检测算法、射孔策略考虑因素以及从动态数据(例如 PNL 日志和模拟模型)得出的见解来识别具有剩余产层潜力的深度区间;
  • 排水分析:它估计每个产区的每个生产井可能排油/扫油的面积,该方法提供了不同的分析方法来处理不同的油藏类型(例如,几何排水分析适用于基质主导的油藏,而几何排水分析适用于基质主导的油藏)。基于流量的排水分析对于裂缝主导的储层更好);
  • 地质风险评估:自动评估结构和测绘风险;
  • 井筒可达性:通过基于人工智能的井筒图解译和数字化来评估机械可行性;
  • 生产率预测:通过从统计、分析和基于机器学习的方法等多种选项中进行选择来估计产量收益;
  • 间距分析:确定分配给现有井的面积/体积内的区域,以避免干扰新目标;
  • 目标搜索:它使用自动优化技术确定放置目标井(垂直或水平)的最佳位置,具有相对成功概率建模和全面的地质工程约束。

这些单独的组件被组装起来以构建更大的不同工作流程。该过程会根据数据可用性的状态自动调整其分析基础,数据可用性的状态因具体情况而异。图 2 总结了一般自动化工作流程,其中必要的元素被系统地连接起来。

图 2. Recompletion Finder 工作流程摘要

QRI
(来源:QRI)

上传某个领域所需的多学科数据后,通常只需几分钟即可为每个正在运行的案例生成现场开发候选人目录。通过分析历史现场性能并针对模拟资产进行基准测试,系统为给定现场选择适当且最佳的设置。这些设置可以调整,并且可以轻松创建和管理场景来调查关键参数的替代假设和不确定性。设置的示例包括用于绘制地球工程属性、井距范围、净收益截止值和成功概率的方法和参数。

云原生平台促进增强的用户体验和协作

作为云原生解决方案,该系统提供安全的协作云体验,并充分利用云计算的可扩展性。用户创建一个工作区并立即邀请其他人作为协作者。

灵活的设置鼓励用户测试多种假设并与其他团队成员分享案例。每个案例的执行通常只需几分钟,结果可通过一组基于浏览器的交互式仪表板访问,可供资产团队审查和审查。提供整合多学科数据和分析的多种视图(例如,执行摘要、历史井卡和单个候选卡,总结与每个前景、岩石物理特征、地质模型评估、产量预测和机械可行性相关的关键信息)以加速审查流程并促进资产团队成员之间的协作。

图 3 展示了一个示例仪表板,突出显示了所选机会位置图、按生产区域的分布以及基于预期增量产量收益的机会排名。

图 3. 仪表板示例

QRI
(来源:QRI)

用于智能生产预测的机器学习

特定的人工智能组件嵌入在每个工作流程的不同方面,例如数据驱动的支付跟踪算法、基于无监督学习的类型曲线、干扰分析的随机优化以及井眼可达性的自然语言处理。存在使用第一原理方法或相邻模拟井的时空插值来预测每个机会的增量产量增益的选项。使用机器学习来预测产量在非常规油藏中特别有用。 

由于自动化工作流程已经从现有射孔层段中收集了所有地质工程和基于日志/模型的属性及其相关的历史生产数据,因此,在给定新建议的完井层段或井的情况下,组织好的数据集可用作未来生产预测的训练数据弹道。

在此工作流程中,可以同时评估随机森林、人工神经网络和决策树等多种机器学习算法,以选择性能最佳的模型。

图 4 说明了一种机器学习辅助生产预测的流程。 

图 4. 机器学习辅助生产预测示例

QRI
(来源:QRI)

除了机器学习辅助方法之外,还存在其他数据驱动的统计方法,例如基于邻域模拟井数据的时空插值。还包括传统的基于物理的方法,例如用于水平井产量预测的 Joshi 和 Furui 方法。应在审查阶段对不同方法的预测产量值进行比较,以制定更切合实际的油田开发规划。

实例探究

AI驱动的机会识别框架已成功应用于全球100多个油气田的多元化投资组合(包括陆上和海上、碳酸盐岩和砂岩、初级生产和注水)。

几乎在所有情况下,它都会提高产量、储量和/或资本效率,同时实现更稳健的决策、提高组织敏捷性并大幅提高效率。

下表重点介绍了两个案例研究,显示了与现有工作流程相比,在时间、花费的人员月数以及探索的场景数量方面所获得的效率提升幅度。

`

案例研究 1:中东碳酸盐岩 

(水平井)

案例研究 2:墨西哥湾碳酸盐岩

(斜井) 

 

90 名活跃制作人

50年生产经验

200 MSTBD 峰值产量

8 活跃制作人

20年历史

120 MSTBD 峰值产量

 

提出技术》

现有工作流程”

提出技术》

现有工作流程”

完成 

时间》

周数

》12

几个月

周数

》12

几个月

花费的人月”

10 

周数

” 30 个月

16 

周数

” 30 个月

场景数量

10 

案例

案件 

案例

没有任何

结论

数字化转型对于石油和天然气行业来说并不是一个新术语。然而,随着当前全球行业的变化以及对极其高效、提高生产率和降低成本的需求,拥抱新技术对于运营商来说至关重要。 

如今基于人工智能的云技术旨在帮助石油和天然气运营商在油藏管理和油田开发规划领域实施实用的数字化战略。

原文链接/hartenergy

Artificial Intelligence Platform Accelerates Reservoir Opportunity Identification

Today’s AI-based cloud-enabled technology is designed to help oil and gas operators implement a practical digitalization strategy in the areas of reservoir management and field development planning.

(Source: QRI Group)

Presented by:

E&P logo

Editor's note: This article appears in the new E&P newsletter. Subscribe to the E&P newsletter here


Successful reservoir management often requires the identification of actionable field development opportunities. The outcome of this process helps the asset team meet production targets and improves recovery efficiency and reserves. Field development planning generally requires multidiscipline collaboration on top of a deep understanding of the target reservoir (geological complexity, production history, etc.). Therefore, the conventional approach has always been time-consuming and labor-intensive, as an abundance of manpower is needed for data gathering and analyzing as well as for vetting the results. 

Today, an artificial intelligence (AI)-enabled cloud-native platform performs rapid and effective reservoir opportunity identification. This tool is built upon advanced AI/machine learning (ML) algorithms that are applied to multidisciplinary datasets. It streamlines multiple complex geological and engineering workflows, such as bypassed pay identification, drainage analysis, production forecast and others. Additionally, by intelligently integrating disparate data sources such as well logs, reservoir models, and production and completion data, it enables new cross-functional workflows. The final target is to generate a ranked catalog of actionable opportunities (recompletion, sweet spot, horizontal well) that enables an asset team to assess field development prospects collaboratively. Through innovative frameworks leveraging cloud computing, multi-scenario analysis becomes practical and leads to better risk management and shorter reservoir management decision cycles.

Robust methodology with streamlined geological and engineering workflows

This technology intelligently automates many of the typically labor-intensive workflows in search of recompletion, sweet spot or horizontal well field opportunities. Before performing actual analysis, multi-disciplinary data are input with flexible standards and formats, including Energistics RESQML data format. Figure 1 illustrates the different data sources that can be integrated.

FIGURE 1. Integration of Multi-disciplinary Data

QRI
(Source: QRI)

After data have been uploaded to the dataset manager, each data category is checked for data validity. Also, the platform cross-checks the multi-disciplinary data to examine the compatibility between different data sources. Following data validation, the opportunity identification workflow starts. It consists of several key components:

  • Engineering analytics: It automatically performs contact analysis and flow unit allocation to allocate production per zone for each well, leveraging multiple data sources (e.g., production, completion, perforation, fluid properties and PLT/ILT information), and it performs decline curve analysis using AI-based event detection and type curve generation using unsupervised learning;
  • Remaining pay identification: It identifies depth intervals with remaining pay potential using pay connectivity analysis, baffle detection algorithms, perforation strategy considerations and insights derived from dynamic data such as PNL logs and simulation models;
  • Drainage analysis: It estimates the area that is likely drained/swept of oil for every producing well in each producing zone, and the methodology provides different analysis methods to tackle different reservoir types (e.g., geometric drainage analysis is suitable for matrix-dominated reservoirs while rate-based drainage analysis is better for fracture-dominated reservoirs);
  • Geological risk assessment: It automatically assesses structural and mapping risks;
  • Wellbore Accessibility: It evaluates the mechanical feasibility through AI-based deciphering and digitalization of wellbore diagrams;
  • Production rate forecast: It estimates production gains by selecting from multiple options, such as statistical, analytical and ML-based methods;
  • Spacing analysis: It identifies regions located within the acreage/volume allocated to existing wells to avoid interference with the new targets; and
  • Target search: It identifies optimal locations for placing target wells (either vertical or horizontal) using automated optimization techniques, featuring relative probability of success modeling and comprehensive geo-engineering constraints.

These individual components are assembled to build larger distinct workflows. The process automatically adjusts its analysis basis given the status of data availability, which varies case by case. Figure 2 summarizes the general automated workflow where necessary elements are systematically connected.

FIGURE 2. Summary of Recompletion Finder Workflow

QRI
(Source: QRI)

After uploading the required multi-disciplinary data for a field, it usually takes only a few minutes to generate a catalog of field development candidates for each case being run. By analyzing historical field performance and benchmarking against analog assets, the system picks the appropriate and optimal settings for the given field. These settings can be adjusted, and it is easy to create and manage scenarios to investigate alternative assumptions and uncertainty in key parameters. Examples of settings include methods and parameters for mapping geo-engineering properties, well spacing ranges, net pay cut-offs and probability of success.

Cloud-native platforms promote enhanced user experience and collaboration

As a cloud-native solution, the system provides a secured collaborative cloud experience and leverages the full scalability of cloud computing. Users create a workspace and instantly invite others as collaborators.

Flexible settings encourage users to test multiple hypotheses and share cases with other team members. Each case is executed, typically in a matter of minutes, and the results are accessible through a set of interactive browser-based dashboards, ready for the asset team’s review and vetting. Multiple views integrating multi-disciplinary data and analysis are presented (e.g., executive summary, historical well cards, and individual candidate cards summarizing the critical information related to each prospect, petrophysical characterization, geo-model assessment, production forecast and mechanical feasibility) to accelerate the vetting process and promote collaboration between asset team members.

Figure 3 presents an example dashboard highlighting selected opportunity location map, distribution by production zone and ranking of opportunities based on anticipated incremental production gain.

FIGURE 3. Example Dashboard

QRI
(Source: QRI)

ML for intelligent production forecast

Specific AI components are embedded within different aspects of each workflow, such as a data-driven pay tracking algorithm, unsupervised learning-based type curving, stochastic optimization for interference analysis, and natural language processing for wellbore accessibility. Options exist for forecasting incremental production gain for each opportunity using first-principle methods or spatial-temporal interpolation from neighboring analog wells. Using ML to predict production is especially useful in the context of unconventional reservoirs. 

As the automated workflow has already gathered all geo-engineering and log/model-based attributes from existing perforated intervals along with their associated historical production data, the organized dataset serves as training data for future production prediction, given a new proposed completion interval or well trajectory.

In this workflow, multiple ML algorithms such as Random Forest, Artificial Neural Networks and Decision Tree can be evaluated simultaneously to select the best performing model(s).

Figure 4 illustrates the process of one ML-assisted production forecast. 

FIGURE 4. Example of ML-Assisted Production Forecast

QRI
(Source: QRI)

In addition to the ML-assisted methodology, other data-driven statistical methods exist, such as spatial-temporal interpolation based upon neighborhood analog wells’ data. Conventional physics-based methods are also included, such as Joshi and Furui methods for horizontal wells’ production forecast. A comparison of the forecasted production values from different methods should be carried out during the vetting phase for more realistic field development planning.

Case studies

The AI-powered opportunity identification framework has been successfully applied to a diverse portfolio of more than 100 oil and gas fields globally (including onshore and offshore, carbonate and sandstone, primary production and waterflood).

In almost every case, it led to an increase in production, reserves and/or capital efficiency while enabling more robust decision-making, increasing organizational agility and greatly improving efficiency.

Two case studies are highlighted in the table below, showing a magnitude of efficiency gained in terms of time, person months spent as well as the number of scenarios explored compared to the existing workflows.

`

Case Study 1: Middle East Carbonate 

(Horizontal wells)

Case Study 2: Gulf-of-Mexico Carbonate

(Deviated wells) 

 

90 Active Producers

50 Years Production

200 MSTBD Peak Production

8 Active Producers

20 Years of History

120 MSTBD Peak Production

 

Presented Technology​

Existing Workflow​

Presented Technology​

Existing Workflow​

Completion 

Time​

Weeks

​12

Months

Weeks

​12

Months

Man-Months Spent​

10 

Weeks

​ 30 Months

16 

Weeks

​ 30 Months

Number of Scenarios

10 

Cases

Case 

Cases

None

Conclusion

Digital transformation is not a new term in the oil and gas industry. However, with the current global changes in the industry and the need to be extremely efficient, increase productivity and reduce costs, embracing new technologies is essential for operators. 

Today’s AI-based cloud-enabled technology is designed to help oil and gas operators implement a practical digitalization strategy in the areas of reservoir management and field development planning.