非常规/复杂油藏

物理信息机器学习应用于巨场中的复杂组合模型

本文作者回顾了机器学习在复杂成分油藏模拟中确定临界温度和饱和压力等流体特性的优势。

储层横截面显示 C7+ 摩尔分数随深度的变化。
图1——储层横截面显示C7+摩尔分数随深度的变化。
来源:IPTC 23730。

成分油藏模拟是一项耗时且需要复杂物理条件的活动。在整篇论文中,作者回顾了机器学习 (ML) 在复杂成分油藏模拟中确定临界温度和饱和压力等流体特性的优势。基于 Heidemann-Khalil 方法,实施了一种预测模拟过程中临界温度的 ML 方法,该方法以更低的计算成本获得更准确的结果,优于标准方法,并提高了具有成分梯度和可混相气体注入的巨型油田模型的性能。

字段描述

案例研究涉及一个由多个油藏组成的大型海上碳酸盐油田。目前生产处于加速阶段;投产后不久就实施了顶部混相烃气体注入。

图片尺寸 1280X1280
以 SPE 会员身份继续阅读
SPE 会员:请在页面顶部登录以访问此会员专属内容。如果您不是会员,但您认为 JPT 内容很有价值,我们鼓励您加入 SPE 会员社区以获得完全访问权限。
原文链接/JPT
Unconventional/complex reservoirs

Physics-Informed Machine Learning Applied to Complex Compositional Model in a Giant Field

The authors of this paper review the advantages of machine learning in complex compositional reservoir simulations to determine fluid properties such as critical temperature and saturation pressure.

Reservoir cross section showing variation of C7+ mole fraction with depth.
Fig. 1—Reservoir cross section showing variation of C7+ mole fraction with depth.
Source: IPTC 23730.

Compositional reservoir simulation is a time-intensive activity demanding complex physics. In the complete paper, the authors review the advantages of machine learning (ML) in complex compositional reservoir simulations to determine fluid properties such as critical temperature and saturation pressure. An ML approach to predict critical temperatures during simulation based on the Heidemann-Khalil method is implemented, resulting in more-accurate results with lower computational cost, outperforming the standard method and improving performance on a giant field model with compositional gradient and miscible gas injection.

Field Description

The case study refers to a giant offshore carbonate field composed of multiple reservoirs. Production is currently in a rampup phase; crestal miscible hydrocarbon gas injection was implemented soon after startup.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.