数字油田

特邀评论:2025 年展望:石油和天然气行业的数字化转型——从“演进”到“冲击波”

前进的道路不仅仅是自动化,而是增强。人工智能不会取代人类的专业知识,而是会增强它。掌握这种平衡的人将在快速发展的能源格局中决定石油和天然气的未来。

数据结构分析人工智能数据科学数字化转型
资料来源:Just_Super/Getty Images。

2019 年 6 月,在 OpenAI 革命带来巨大变革之前,我撰写了一篇 JPT 客座社论,探讨石油和天然气行业的数字化历程。我强调了工业物联网 (IIoT)、云计算和人工智能 (AI) 的变革作用。

现在,站在 2025 年的角度回顾那篇社论,我们会惊讶地发现,许多预测都已成真,而该行业的发展也超出了人们的预期。

突然加速:石油和天然气行业的人工智能冲击波

近 30 年来,石油和天然气行业的技术进步遵循着一条进化轨迹。每一次突破——二维和三维地震成像、水平和定向钻井、半潜式钻井、微机电系统 (MEMS) 和纳米技术等永久性传感器——都建立在先前的成功基础之上,推动着效率和采收率的逐步提高。

获取实时井下数据的能力开启了“感知-计算-行动”时代,从根本上改变了油藏管理。然而,这些进步遵循着有节制的步伐,让工程师有时间将新方法与传统工作流程相结合。

随后,在短短 20 个月的时间里,该行业受到了技术冲击。OpenAI 的突破加速了人工智能革命,打破了长期以来的范式。公司不再仅仅依赖油田服务提供商的井下测量数据。相反,他们现在根据数十年的历史数据训练人工智能模型,以预测最大效率 (MER) 和预期最终采收率 (EUR)。

确定性建模的“旧世界”正在迅速让位于概率人工智能驱动的决策。

这种突然的转变不仅仅关乎自动化,它正在重新定义油藏管理的基本原则。该行业发现自己正在努力应对人工智能预测固有的不确定性,挑战工程师们去信任那些没有明确编程而是从大量数据集中学习模式的模型。技术变革的速度超过了我们充分理解其影响的能力——与过去创新的受控发展形成鲜明对比。

从数据收集到智能系统:元知识的兴起

2019 年,我提出了元知识的概念——了解我们知道什么和不知道什么比基本知识(辨别我们知道什么和不知道什么的能力)更重要。如今,这已成为数字化转型的重要组成部分。人工智能不再只是处理数据——它还确定哪些数据有意义,在海量的信息库中区分信号和噪音。

传统方法依赖于人类驱动的解释,而人工智能模型现在可以识别超出人类能力的模式和异常。从数十亿个数据点中提取可操作见解的能力消除了现场操作中的许多低效率。更重要的是,它重塑了工程师的角色,将他们从手动解释者转变为验证和改进机器生成的见解的战略人工智能策展人。

从静态模型到动态数字孪生

油藏模型曾经是静态表示,定期用新数据更新。如今,静止数据(存档信息)和动态数据(实时传感器读数)之间的区别已经模糊,形成一个连续的反馈循环。

集成人工智能、实时传感器数据和历史档案的动态数字孪生可提供储层行为的动态实时更新。这些系统会根据新的测量结果进行自我修正,从而大幅提高预测准确性。生产预测曾经受到静态假设的约束,现在已成为一种流动的自适应过程,能够对地下变化做出反应。

油藏管理的人工智能革命:从测量到预测

从基于测量到预测驱动的油藏管理的转变是该行业历史上最深刻的变革之一。

  • 传统油藏管理。 几十年来,油田服务公司提供地震勘测、测井和生产测试。工程师分析这些数据以估算碳氢化合物的含量并优化生产。虽然这种方法有效,但速度慢、成本高,而且容易出现人为错误。
  • 人工智能驱动的优化。 当今的人工智能模型吸收了大量数据集,分析了复杂的变量相互作用,并生成比传统模型更精确的生产预测。这些算法不断优化油田开发策略,减少不确定性并提高采收率。
  • 新的现实。 人工智能驱动的系统不再只是解释数据——它们 自主产生见解和建议。工程师现在与人工智能一起工作,指导而不是手动计算生产策略。

这种转变已经在降低运营成本的同时最大限度地提高了开采效率。然而,挑战依然存在——工程师必须开发新技能来解释和验证人工智能生成的模型,确保机器预测与油藏物理的物理约束保持一致。

 

未来:人工智能、机器人和油田自动化的下一次飞跃

虽然行业的大部分人工智能转型都集中在地下建模上,但下一个前沿将把自动化引入物理操作。

  • 用于海底维护的先进机器人。 人工智能、下一代芯片和量子计算的融合将使自主机器人能够进行海底检查和维修——这是深水作业中的关键进步,因为人工干预成本高昂且危险。
  • 边缘计算的发展。 人工智能模型很快将直接在井场运行,从而减少决策延迟并实现实时优化,而无需依赖云。

最终的愿景是实现自动化油田,其中人工智能驱动的系统可以监控、预测和优化运营,而无需持续的人工监督。然而,实现这一目标需要在自动化和人类直觉之间取得必要的平衡——这是行业不能忽视的原则。
竞争格局:人工智能、能源转型和石油和天然气的作用

人工智能在彻底改变石油和天然气业务的同时,也重塑了更广泛的能源格局。全球对可再生能源、电池存储和氢气的推动加剧了对资本和资源的竞争。

然而,摆脱化石燃料的转变不会立即发生。在可预见的未来,石油和天然气仍将不可或缺,不仅作为能源,而且是从石化到运输等行业的基础。关键挑战是维持运营效率,同时为逐步转向更清洁的替代能源做好准备。

人工智能将在这一转变中发挥双重作用。

  1. 优化碳氢化合物开采。 通过提高油藏效率和减少排放,人工智能将帮助石油公司最大限度地利用现有资产。
  2. 促进可再生能源整合。 人工智能模型将使石油和天然气业务与新兴能源系统无缝整合,优化化石燃料生产和可再生能源采用之间的平衡。

该行业的长期竞争力将取决于它如何有效地接受数字化转型,同时在不断发展的能源结构中定位自己。
最后的想法:“前进的道路

人工智能革命正在以比以往任何技术变革更快的速度重塑石油和天然气行业。该行业不再处于渐进式变革时期,而是处于根本性重塑的时代。

蓬勃发展的公司将是那些

  • 采用人工智能驱动的决策,但不要忽视控制油藏行为的根本物理原理。
  • 利用自动化来提高安全性、效率和成本效益。
  • 通过将人工智能融入化石燃料和可再生能源运营中来适应能源转型。

前进的道路不仅仅是自动化,而是增强。人工智能不会取代人类的专业知识,而是会增强它。掌握这种平衡的人将 在快速发展的能源格局中决定石油和天然气的未来。

进一步阅读

数字化转型:追求运营效率, 作者:Michael Thambynayagam,JPT。

Michael Thambynayagam, SPE,是斯伦贝谢的退休科学家,职业生涯长达 35 年。他曾担任过多个高级职位,包括 英国剑桥斯伦贝谢古尔德研究中心的董事总经理。他最出名的是他在扩散数学方面的开创性工作,该工作发表在《扩散手册:工程师应用解决方案》(麦格劳-希尔,2011 年)中,并获得了 2011 年 PROSE 物理科学、数学和工程杰出奖。

原文链接/JPT
Digital oilfield

Guest Editorial: 2025 Perspective: Digital Transformation in Oil and Gas—From Evolution to Shockwave

The path forward is not just about automation—it is about augmentation. AI is not replacing human expertise; it is amplifying it. Those who master this balance will define the future of oil and gas in a rapidly evolving energy landscape.

Data Fabric Analytics Artificial Intelligence Data Science Digital Transformation
Source: Just_Super/Getty Images.

In June 2019, before the seismic shift brought by the OpenAI revolution, I authored a JPT guest editorial on the oil and gas industry's digitalization journey. I emphasized the transformative roles of the industrial internet of things (IIoT), cloud computing, and artificial intelligence (AI).

Now, reflecting on that editorial from the vantage point of 2025, it is remarkable to witness how many predictions have materialized and how the industry has evolved beyond expectations. ¹

A Sudden Acceleration: The AI Shockwave in Oil and Gas

For nearly 3 decades, technological advancements in the oil and gas industry followed an evolutionary trajectory. Each breakthrough—2D and 3D seismic imaging, horizontal and directional drilling, semisubmersibles, and permanent sensors such as microelectromechanical systems (MEMS) and nanotechnology—built upon prior successes, driving incremental gains in efficiency and recovery.

The ability to acquire real-time downhole data has ushered in the "sense-compute-act" era, fundamentally transforming reservoir management. However, these advances followed a measured pace, allowing engineers time to integrate new methods with traditional workflows.

Then, in a span of just 20 months, the industry was hit by a technological shockwave. The AI revolution—accelerated by OpenAI’s breakthroughs—upended long-held paradigms. No longer do companies rely solely on downhole measurements from oilfield service providers. Instead, they now train AI models on decades of historical data to predict maximum efficient rate (MER) and expected ultimate recovery (EUR).

The “old world” of deterministic modeling is rapidly giving way to probabilistic AI-driven decision making.

This abrupt shift is not just about automation; it is redefining the fundamental principles of reservoir management. The industry finds itself grappling with uncertainties inherent in AI predictions, challenging engineers to place trust in models that are not explicitly programmed but instead learn patterns from vast data sets. The rate of technological change is outpacing our ability to fully comprehend its implications—a stark contrast to the controlled evolution of past innovations.

From Data Collection to Intelligent Systems: The Rise of Metaknowledge

In 2019, I introduced the concept of metaknowledge—understanding what we know and don’t know—as more critical than primary knowledge—the ability to discern what we know and what we do not. Today, this has become an essential component of digital transformation. AI no longer just processes data—it determines which data is meaningful, distinguishing signal from noise within the vast repositories of information.

Where traditional methods relied on human-driven interpretations, AI models now identify patterns and anomalies at scales beyond human capability. The ability to extract actionable insights from billions of data points has eliminated many inefficiencies in field operations. More importantly, it has reshaped the role of engineers, shifting them from manual interpreters to strategic AI curators who validate and refine machine-generated insights.

From Static Models to Living Digital Twins

Reservoir models were once static representations, periodically updated with new data. Today, the distinction between data at rest (archived information) and data in motion (real-time sensor readings) has blurred into a continuous feedback loop.

Living digital twins—which integrate AI, real-time sensor data, and historical archives—now provide dynamic, real-time updates of reservoir behavior. These systems self-correct based on new measurements, drastically improving predictive accuracy. Production forecasting, once constrained by static assumptions, has become a fluid, adaptive process capable of responding to subsurface changes as they occur.

The AI Revolution in Reservoir Management: From Measurement to Prediction

The shift from measurement-based to prediction-driven reservoir management is among the most profound transformations in the industry’s history.

  • Traditional reservoir management. For decades, oilfield service companies provided seismic surveys, well logs, and production tests. Engineers analyzed this data to estimate hydrocarbon volumes and optimize production. While effective, this approach was slow, costly, and prone to human error.
  • AI-driven optimization. Today’s AI models absorb vast data sets, analyze complex variable interactions, and generate far more precise production forecasts than traditional models. These algorithms continuously optimize field development strategies, reducing uncertainties and improving recovery factors.
  • A new reality. AI-driven systems no longer just interpret data—they generate insights and recommendations autonomously. Engineers now work alongside AI, guiding rather than manually computing production strategies.

This transformation is already reducing operational costs while maximizing extraction efficiency. However, challenges remain—engineers must develop new skills to interpret and validate AI-generated models, ensuring that machine predictions remain aligned with the physical constraints of reservoir physics.

 

The Future: AI, Robotics, and the Next Leap in Oilfield Automation

While much of the industry’s AI transformation has focused on subsurface modeling, the next frontier will bring automation into physical operations.

  • Advanced robotics for subsea maintenance. The convergence of AI, next-generation chips, and quantum computing will enable autonomous robots to conduct subsea inspections and repairs—a critical advancement in deepwater operations where human intervention is costly and hazardous.
  • Edge computing evolution. AI models will soon operate directly at the wellsite, reducing decision-making latency and enabling real-time optimization without cloud dependency.

The ultimate vision is an autonomous oilfield, where AI-driven systems monitor, predict, and optimize operations without requiring continuous human oversight. However, achieving this requires an essential balance between automation and human intuition—a principle the industry cannot afford to overlook.
The Competitive Landscape: AI, Energy Transition, and the Role of Oil and Gas

While AI is revolutionizing oil and gas operations, it is also reshaping the broader energy landscape. The global push toward renewables, battery storage, and hydrogen is intensifying competition for capital and resources.

However, the transition away from fossil fuels will not be immediate. Oil and gas will remain indispensable for the foreseeable future, not just as an energy source but as a foundation for industries from petrochemicals to transportation. The key challenge is sustaining operational efficiency while preparing for a gradual shift toward cleaner alternatives.

AI will play a dual role in this transformation.

  1. Optimizing hydrocarbon extraction. By improving reservoir efficiency and reducing emissions, AI will help oil companies maximize returns from existing assets.
  2. Facilitating renewable integration. AI models will enable seamless integration of oil and gas operations with emerging energy systems, optimizing the balance between fossil fuel production and renewable adoption.

The industry’s long-term competitiveness will depend on how effectively it embraces digital transformation while positioning itself within the evolving energy mix.
Final Thoughts: The Path Forward

The AI revolution is reshaping oil and gas faster than any prior technological shift. The industry is no longer in a period of incremental change—it is in an era of fundamental reinvention.

The companies that thrive will be those that

  • Embrace AI-driven decision-making without losing sight of the underlying physics governing reservoir behavior.
  • Leverage automation to enhance safety, efficiency, and cost-effectiveness.
  • Adapt to the energy transition by integrating AI across both fossil fuel and renewable operations.

The path forward is not just about automation—it is about augmentation. AI is not replacing human expertise; it is amplifying it. Those who master this balance will define the future of oil and gas in a rapidly evolving energy landscape.

For Further Reading

Digital Transformation: Quest for Operational Efficiency by Michael Thambynayagam, JPT.

Michael Thambynayagam, SPE, is a retired scientist from Schlumberger with a career spanning over 35 years. He has held senior positions, including managing director of Schlumberger Gould Research, Cambridge, England. He is best known for his pioneering work on the mathematics of diffusion, published in The Diffusion Handbook: Applied Solutions for Engineers (McGraw-Hill, 2011), and was a recipient of the 2011 PROSE Award for Excellence in Physical Sciences, Mathematics, and Engineering.