碳捕获和储存

客座社论:回收二氧化碳用于 EOR?为什么不?

如果世界要防止全球变暖,碳捕获和储存及其利用潜力将至关重要。虽然挪威自 20 世纪 90 年代中期以来一直将捕获的二氧化碳注入咸水层,但欧洲尚未尝试、也没有计划将二氧化碳用于 EOR。为什么不?

JPT_2023-02_GuestEd_CO2-EOR 工艺的基本特征[1].jpg
剖面图展示了如何利用二氧化碳来提高石油产量。资料来源:美国国家能源技术实验室。

如果世界要防止全球变暖,具有利用潜力的碳捕获和储存(CCS)将至关重要。欧盟委员会的模型显示,如果欧盟想要实现气候中和目标,到 2050 年,每年需要捕获、利用或储存 300 至 6.4 亿吨 CO 2 。因此,所有行业,特别是石油和天然气行业,都必须发挥自己的作用,激励新存储的开发,同时加强现有生产设施的利用。

欧盟能源负责人卡德里·西姆森 (Kadri Simson) 在 10 月于挪威奥斯陆举行的第二届 CCUS 论坛上发表讲话时宣布,捕获的排放物可以储存或回收到其他工业流程中尽管爱沙尼亚政治家没有直接表示,但通过注入 CO 2提高石油采收率 (EOR)应被视为储存和减少排放的可行选择。需要强调的是,作为 EOR 的函数,储存的 CO 2量将大于石油开采产生的CO 2排放量。

美国和加拿大的二氧化碳 EOR

自 20 世纪 70 年代以来,这已成为美国和加拿大许多拥有成熟油藏的项目的常规程序,并且通常在注入产出水的效果减弱后启动。这是在没有政府支持的情况下实现的。

虽然挪威自 20 世纪 90 年代中期以来一直将捕获的 CO 2注入咸水含水层,但欧洲尚未尝试也没有计划将 CO 2用于EOR。

为什么不?

平衡不断增长的能源需求和降低温室气体 (GHG) 排放是当今行业面临的最大难题之一:目前全球消费量约为 1 亿桶/日。

根据IEA的《2022年世界能源展望》,存在三种情景。APS(已宣布的承诺情景)假设化石燃料需求将于 2024 年达到峰值,达到 9810 万桶/日。STEPS(既定政策情景)预测,需求峰值将于 2035 年达到 1.032 亿桶/日,然后进入稳定的长期下降(图 1)。如果 NZE(净零排放)情景成为现实,石油需求将永远不会恢复到 2019 年的水平。预计2021年至2030年期间需求每年平均下降2.5%,2030年至2050年每年下降略低于6%。

按情景划分的全球石油需求和原油价格。
图1——按情景划分的全球石油需求和原油价格。
资料来源:国际能源署《202​​2 年世界能源展望》。

在绿色能源预计到本世纪中叶占据能源结构的最大份额之前,采用 EOR 技术和升级 CCS 基础设施可能是满足能源需求和降低排放的答案。

开发碳氢化合物遗产和 CCS

全球共有30个CCS项目在运营,11个在建,153个在开发。2022 年,项目管道中将增加 61 个新设施。所有 CCS 设施的 CO 2捕集能力已增至 244 吨/年,在过去 12 个月中增长了 44%(全球 CCS 研究所 2022)。

石油和天然气对影响气候变化的积极遗产是利用其独创性和经验将深空的近海水库转变为安全可靠的 CO 2避难所。

AGR 是LINCCS (链接碳捕获与封存)研究项目的一部分,该项目致力于解决挪威北海的封存容量挑战。在挪威研究委员会的支持下,LINCCS 联盟的目标是开发下一代 CCS 解决方案,并在 2024 年底前进行示范,全面的商业项目预计将于 2027 年完成。

该项目的多学科团队将提供地球科学、油藏和钻井工程、存储监测、设施和成本工程方面的支持和建议,以创建跨不同场景的设计和重新设计可能性的“图集”。

对于渴望减少碳足迹并寻求更高效、更经济的环境前景的行业来说,这是一个双赢的解决方案。由于运营商正在寻找减少自身排放的方法,海上 CCS 正在成为一种有竞争力的替代方案。这一转变正在进行中,该行业正在采取坚实的循序渐进的方法来调整运营和采用创新。

挪威的长斯基普(Langskip)项目就是一个典型的例子。挪威东部的两个排放点(布雷维克的艾德堡水泥公司和奥斯陆 Celsio 的 Hafslund 垃圾焚烧发电厂)每年将捕获总计 0.8 吨液态 CO 2,​​然后运输到 ygarden 到海底砂岩含水层中的最终目的地北海海底2000米处。Northern Lights(Longskip 项目的 CO 2运输和储存部分)于 2022 年 8 月迎来了第一个商业客户——一家荷兰氨和化肥工厂,最终可能拥有储存超过 5 吨/年 CO 2的能力。

由于对存储空间的需求将变得更大,每吨碳的成本必须降低到完全不同的水平。储存数十万吨CO 2的大型CO 2储存库将需要比Longskip 项目28 亿美元更多的投资和政府支持;挪威政府预计将承担其中的 18 亿美元

将 CO 2与 CCS 一起用于 EOR 不仅会对气候账户做出积极贡献;它可以彻底改变石油和天然气行业的未来。在对环境和气候影响最小的情况下延长枯竭油田的恢复和寿命,可以减少勘探需求,并可以避免在最具争议的地区进行开发。

碳捕获、使用和储存的说明图。
碳捕获、使用和储存的说明图。
资料来源:AGR。

研究二氧化碳 EOR 的可能性

挪威石油管理局(NPD)在一份关于先进开采方法的报告中表示,挪威大陆架上技术上可采的剩余石油资源需要先进的EOR方法才能充分开采。这项由三部分组成的研究表明,初始储油量平均有 7% 的潜力,可提高采收率,并且油藏中 CO 2的永久封存效果可达 70-100%。运营商在 NPD 的支持下开展了多项研究,显示出令人鼓舞的结果和潜在的宝贵机会来储存 CO 2

经过 30 年涉及 80 个 CO 2项目的多项综合研究,挪威科技大学还表明,石油开采量可比原始体积增加 6 至 8%(276 至 3.51 亿 Sm 3 )( Energy Procedia) 2017)。此外,SINTEF 的研究人员指出北海的几个地区和油田适合采用这种 EOR 方法。其中包括 Ekofisk、Brage、Oseberg Saser、Troll、Gullfaks、Snorre 和 Statfjord。在挪威海,Norne油田也是一个潜在的机会。

为什么不用二氧化碳来提高石油采收率?

尽管 NPD、学术界和主要石油公司进行的研究表明通过使用 CO 2可以提高采收率,但挪威或其他欧洲石油生产国尚未做出投资建立CO 2封存与EOR 相结合。

为什么不?

基础设施建设需要巨额投资,如果没有当局的支持,能源公司是不会进行此类投资的。这种沉默的部分原因是人们认识到将CO 2引入现有油井和设施中存在风险,但更重要的是,欧盟通过分类法逐步淘汰化石能源的指导方针。此外,相对于 EOR 项目的经济潜力,声誉风险被认为过高。

夺取碳奖

明年,欧盟委员会将提出 CCS 和碳利用技术的“战略愿景”,旨在澄清规则并为投资者提供确定性。新的法律框架和资金流已经在令人信服的紧迫感的推动下出现。

由于许多油田正处于枯竭的过程中,时间至关重要,因为将现有基础设施转变为 EOR 和 CO 2封存功能将需要数年时间才能升级。现在可以规划和实施增加 CO 2提取并加快封存工作的窗口。石油和天然气行业的敏捷性和可转移的知识和技能有潜力改变能源转型和快速气候行动。

联合国最新的排放差距报告指出,温室气体排放量必须减少至少 30%,才能阻止全球气温上升超过《巴黎协定》设定的 2°C 目标。它呼吁“紧急进行全系统转型”。因此,我们不能再浪费时间来激励采取行动,在整个能源生态系统中采取更安全、更可靠和可持续的做法。


Ole Gunnar Tveiten, SPE,是 AGR 的地质顾问。他拥有近 40 年的行业经验,对北海地质有着深入的了解。他在作业地质学、孔隙压力评估和地质力学方面的业绩记录包括为该盆地的一些最具历史意义的发现和油田开发项目提供咨询。最近,他参与了从筛选和表征潜在CO 2封存地点到国际CCS 项目的风险评估和认证等任务。

原文链接/jpt
Carbon capture and storage

Guest Editorial: Recycling CO2 for EOR? Why Not?

Carbon capture and storage, with the potential for usage, will be crucial if the world is to prevent global warming. While Norway has been injecting captured CO2 in saline aquifers since the mid-1990s, there has been no attempt, and no plans exist, in Europe to use CO2 for EOR. Why not?

JPT_2023-02_GuestEd_Essential-Features-of-the-CO2-EOR-Process[1].jpg
Cross section illustrating how CO2 can be used to improve oil production. Source: US National Energy Technology Laboratory.

Carbon capture and storage (CCS), with the potential for usage, will be crucial if the world is to prevent global warming. Modeling by the European Commission shows that the EU will need to capture, utilize, or store between 300 and 640 million tonnes of CO2every year by 2050 if it wants to meet its climate-neutrality goal. It is therefore imperative that all industries, particularly the oil and gas sector, play their part to incentivize the development of new storage while enhancing the use of available producing facilities.

Speaking at the second CCUS Forum, held in October in Oslo, Norway, the EU’s energy chief Kadri Simson announced that captured emissions can be either stored or recycled into other industrial processes. Though it wasn’t directly stated by the Estonian politician, enhanced oil recovery (EOR) via CO2 injection should be considered as a viable option to both store and reduce emissions. It is important to emphasize that the amount of stored CO2, as a function of EOR, will be greater than CO2 emissions created from oil extraction.

CO2 for EOR in US and Canada

Since the 1970s, this has been a routine procedure in many US and Canadian projects with mature reservoirs and is usually instigated after the effect of injected produced water has worn off. It has been achieved without government support.

While Norway has been injecting captured CO2 in saline aquifers since the mid-1990s, there has been no attempt, and no plans exist, in Europe to use CO2 for EOR.

Why not?

Balancing increasing energy demand while lowering greenhouse gas (GHG) emissions is one of the greatest conundrums facing the industry today: global consumption is currently around 100 million B/D.

According to IEA’s 2022 World Energy Outlook, there are three scenarios. The APS (announced pledges scenario) assumes fossil-fuel demand will peak in 2024 with 98.1 million B/D. The STEPS (stated policies scenario) projection is peak demand in 2035 at 103.2 million B/D, before going into steady long‑term decline (Fig. 1). If the NZE (net zero emissions) scenario comes to pass, oil demand never returns to its 2019 level. It foresees demand falling by 2.5% each year on average between 2021 and 2030, and by just under 6% each year from 2030 to 2050.

Global oil demand and crude oil price by scenario.
Fig. 1—Global oil demand and crude oil price by scenario.
Source: International Energy Agency’s 2022 World Energy Outlook.

Adopting EOR technologies and upscaling CCS infrastructure could be the answer to meet energy demand and lower emissions before green energy claims the forecast largest stake of the energy mix by mid-century.

Exploiting Hydrocarbon’s Heritage and CCS

Globally, there are 30 CCS projects in operation, 11 are under construction, and 153 are in development. Sixty-one new facilities were added to the project pipeline in 2022. The CO2 capture capacity of all CCS facilities has grown to 244 mtpa, a rise of 44% over the past 12 months (Global CCS Institute 2022).

A positive legacy of oil and gas toward impactful climate change is the use of its ingenuity and experience to convert deep, largely empty offshore reservoirs as safe and secure sanctums for CO2.

AGR is part of the LINCCS (Linking Carbon Capture and Storage) research project which is committed to solving storage capacity challenges in the Norwegian North Sea. Backed by The Research Council of Norway, the aim of the LINCCS consortium is to develop next-generation CCS solutions ready for demonstration by the end of 2024, with full-scale commercial projects expected to be finalized by 2027.

The project’s multidisciplinary teams will deliver support and advice on geoscience, reservoir and drilling engineering, storage monitoring, facilities, and cost engineering to create an “atlas” of the design and redesign possibilities across different scenarios.

It’s a win-win solution for the sector eager to shrink its carbon footprint and seek more efficient and economical environmental prospects. As operators are looking for ways to reduce their own emissions, offshore CCS is emerging as a competitive alternative. The shift is underway with the industry taking a solid step-by-step approach to adapt operations and adopt innovation.

Norway’s Longskip (Langskip) project is a prime example. From two emission points in eastern Norway—HeidelbergCement in Brevik and Hafslund Oslo Celsio waste-to-heat plant—a total of 0.8 tonnes of liquid CO2 will be captured annually for transport to Øygarden to its end destination in a subsea sandstone aquifer 2000 m under the North Sea seabed. The Northern Lights (the CO2 transport and storage part of the Longskip project), which welcomed its first commercial customer, a Dutch factory for ammonia and fertilizer, in August 2022, could eventually have capacity to store more than 5 mtpa of CO2.

As the need for storage space will become far greater, the cost per carbon tonne must be brought down to a completely different level. A mega CO2 store for gigatonne (thousand million tonnes) volumes of CO2 will require far greater investments and government support than the Longskip project at $2.8 billion; the Norwegian state expects to cover $1.8 billion of this.

Using CO2 for EOR alongside CCS will not only make a positive contribution to the climate account; it can overhaul the future of the oil and gas sector. Extending the recovery and lifetime of depleting fields—with minimal impact on the environment and climate—may reduce the need for exploration and may avoid developing in the most controversial areas.

An illustrative graph of carbon capture, use, and storage.
An illustrative graph of carbon capture, use, and storage.
Source: AGR.

Researching Possibilities for EOR With CO2

In a report on advanced extraction methods, the Norwegian Petroleum Directorate (NPD) stated that the remaining oil resources on the Norwegian Continental Shelf that are technically recoverable require advanced EOR methods to be fully exploited. The three-part study showed an average potential of 7% of oil initially in place in improved recovery and a permanent storage effect for CO2 in the reservoir of 70–100%. Several studies have been carried out by operators, with support from the NPD, which show encouraging results and potentially valuable opportunities to store CO2.

Following several comprehensive studies across 30 years involving 80 CO2 projects, the Norwegian University of Science and Technology has also shown that oil extraction can be increased between 6 to 8% (between 276 and 351 million Sm3) beyond the original volume (Energy Procedia 2017). In addition, researchers at SINTEF pointed to several areas and fields in the North Sea that would be suitable for this method of EOR. These include Ekofisk, Brage, Oseberg Sør, Troll, Gullfaks, Snorre, and Statfjord. In the Norwegian Sea, the Norne field is also a potential opportunity.

Why Not Enhanced Oil Recovery With CO2?

Despite the fact that the NPD, academia, and major oil companies have carried out studies that indicate increased recovery through the use of CO2, no decisions have been made either in Norway or in other European oil-producing countries to invest in the establishment of CO2 storage in combination with EOR.

Why not?

Mammoth investment in infrastructure will be required, which energy companies will not undertake without support from the authorities. This reticence is partly due to a perception of the risk associated with introducing CO2 into existing wells and facilities, but more importantly, the EU guidelines through the taxonomy for the phasing out of fossil energy. Also, the reputational risk is considered too high in relation to the economic potential of the EOR project.

Seizing the Carbon Prize

Next year, the European Commission will table a “strategic vision” for CCS and carbon usage technologies with the aim of clarifying rules and giving certainty to investors. New legal frameworks and funding streams are already bouncing off the back of a compelling sense of urgency.

As many oil fields are in the process of being depleted, time is of the essence as the conversion of existing infrastructure to function as EOR and CO2 storage will take several years to upscale. The window is now open to plan and implement increased extraction with CO2 and accelerate storage efforts. The oil and gas industry’s agility and transferable knowledge and skills has the potential to transform the energy transition and fast-track climate action.

The UN’s latest Emissions Gap Reportstates that GHG emissions must be cut by at least 30% to halt global temperature rises beyond the Paris Agreement goals of 2°C. It calls for an “urgent systemwide transformation.” There is, therefore, no time to waste to galvanize action for safer, more secure, and sustainable practices across the energy ecosystem.


Ole Gunnar Tveiten, SPE, is a geology advisor with AGR. With almost 40 years of industry experience, he has a deep knowledge of the geology of the North Sea. His track record in operational geology, pore pressure evaluation, and geomechanics covers advising some of the most historical discoveries and field development projects in the basin. Recently, he has been involved in tasks ranging from screening and characterizing prospective CO2 storage sites to risk assessment and certification of international CCS projects.