数据挖掘/分析

数据分析能够重建油井数据历史中缺失的部分

本文的作者描述了一种程序,可以快速重建整个生产数据集,其中包含不同变量中的多个缺失部分。

诺恩场概览。
图 1 – 现场概览。
资料来源:SPE 208137。

数据缺失问题是油井生产记录中的常见问题。不完整的数据集通常通过省略所有缺失值的观察来简化,这可能会导致重大信息丢失。在完整的论文中,作者开发了一种有效的程序,可以快速重建整个生产数据集,并在不同变量中包含多个缺失部分。最终,完整的信息可以支持油藏历史匹配过程和产量分配,并可以开发油藏动态预测模型。

介绍

缺失值是压力瞬态分析中的一个普遍问题。

SPE_logo_CMYK_trans_sm.png
成为 SPE 会员继续阅读
SPE 会员:请在页面顶部登录才能访问此会员专享内容。如果您还不是会员,但发现 JPT 内容很有价值,我们鼓励您成为 SPE 会员社区的一部分,以获得完全访问权限。
原文链接/jpt
Data mining/analysis

Data Analytics Enables Reconstruction of Missing Segments in Well Data History

The authors of this paper describe a procedure that enables fast reconstruction of the entire production data set with multiple missing sections in different variables.

Norne Field overview.
Fig. 1—Norne Field overview.
Source: SPE 208137.

The problem of missing data is a common one in well-production records. An incomplete data set is commonly simplified by omitting all observations with missing values, which can lead to significant information loss. In the complete paper, the authors developed an efficient procedure that enables fast reconstruction of the entire production data set with multiple missing sections in different variables. Ultimately, the complete information can support the reservoir history-matching process and production allocation and can develop models for reservoir performance prediction.

Introduction

Missing values are a prevalent issue in pressure transient analysis.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.