水库

碳酸盐岩残余油饱和度估算:直接模拟与数据驱动分析相结合的方法

本文提出了一种预测碳酸盐岩残余油饱和度的新型建模框架。该框架使用基于孔隙尺度模拟生成的数据进行训练的监督机器学习模型,旨在补充常规岩心驱替测试或作为快速评估油藏残余油饱和度的工具。

221498_英雄.jpg
来源:论文 SPE 221498

估算注水后残余油饱和度 ( S) 对于选择提高采收率策略、进一步开发油田和预测产量至关重要。我们建立了一个数据驱动的工作流程,使用微计算机断层扫描 (μ-CT) 图像评估碳酸盐样品中的S

采用两相格子波尔兹曼方法对7192μ-CT样品进行了驱替模拟。利用孔隙网络建模和μ-CT图像特征提取获得的岩石物理参数(特征)开发了基于树的回归模型来预测S。岩石物理特征包括孔隙度、绝对渗透率、初始水饱和度、孔隙尺寸分布、喉道尺寸分布和表面粗糙度分布。

我们的方法排除了孔洞和宏观/纳米孔隙度,这让多尺度模拟(碳酸盐岩建模中公认的挑战)变得复杂。将图像细分为多个子体积时,某些子体积可能包含超出子体积本身尺寸的孔洞。因此,考虑到整个图像构成一个孔洞,这些孔洞被忽略。相反,尺寸小于子体积的孔洞不会被排除。尽管存在尺度限制,但我们的子采样(由大量数据支持)确保了我们的微尺度孔隙度预测在统计上是可靠的,为未来研究孔洞和纳米孔隙度对模拟的影响奠定了基础。

结果表明,从干样本图像中获得的特征可用于数据驱动的S预测。我们测试了三种回归模型:梯度提升 (GB)、随机森林和极端梯度提升。其中,优化的基于 GB 的模型表现出最高的S预测能力R 2 = 0.87,平均绝对误差 = 1.87%,均方误差 = 0.12%)。

预计增加数据集大小将增强模型捕捉更广泛岩石特性的能力,从而提高其预测准确性。拟议的用于估计非均质碳酸盐岩地层中S或 的预测建模框架旨在补充常规岩心驱替测试或作为快速评估储层S或 的工具。


本摘要摘自哈利法科技大学的 AS Rizk、M. Tembely、W. AlAmeri、EW Al-Shalabi、R. Farmanov 和 S. Markovic 撰写的论文 SPE 221498。该论文已通过同行评审,可在 OnePetro 上的 SPE 期刊上以开放获取形式获取。

原文链接/JPT
Reservoir

Estimating Residual Oil Saturation in Carbonate Rocks: A Combined Approach of Direct Simulation and Data-Driven Analysis

This paper presents a novel modeling framework for predicting residual oil saturation in carbonate rocks. The proposed framework uses supervised machine learning models trained on data generated by pore-scale simulations and aims to supplement conventional coreflooding tests or serve as a tool for rapid residual oil saturation evaluation of a reservoir.

221498_hero.jpg
Source: Paper SPE 221498

Estimating residual oil saturation (Sor) post-waterflooding is critical for selecting enhanced oil recovery strategies, further field development, and production prediction. We established a data-driven workflow for evaluating Sor in carbonate samples using microcomputed tomography (μ-CT) images.

The two-phase lattice Boltzmann method facilitated the flooding simulation on 7,192 μ-CT samples. Petrophysical parameters (features) obtained from pore network modeling and feature extraction from μ-CT images were utilized to develop tree-based regression models for predicting Sor. Petrophysical features include porosity, absolute permeability, initial water saturation, pore size distribution, throat size distributions, and surface roughness distribution.

Our method excludes vugs and macro/nanoporosity, which complicates multiscale simulations—a recognized challenge in modeling carbonate rocks. When subdividing the image into numerous subvolumes, certain subvolumes may contain vugs exceeding the dimensions of the subvolume itself. Hence, these vugs were omitted given the entirety of the image constitutes a vug. Conversely, vugs with dimensions smaller than those of the subvolume were not excluded. Despite scale limitations, our subsampling, supported by substantial data volume, ensures our microscale porosity predictions are statistically reliable, setting a foundation for future studies on vugs and nanoporosity’s impact on simulations.

The results show that features obtained from dry-sample images can be used for data-driven Sor prediction. We tested three regression models: gradient boosting (GB), random forest, and extreme gradient boosting. Among these, the optimized GB-based model demonstrated the highest predictive capacity for Sor prediction (R2 = 0.87, mean absolute error = 1.87%, mean squared error = 0.12%).

Increasing the data set size is anticipated to enhance the models’ ability to capture a broader spectrum of rock properties, thereby improving their prediction accuracy. The proposed predictive modeling framework for estimating Sor in heterogeneous carbonate formations aims to supplement conventional coreflooding tests or serve as a tool for rapid Sor evaluation of the reservoir.


This abstract is taken from paper SPE 221498 by A. S. Rizk, M. Tembely, W. AlAmeri, E. W. Al-Shalabi, R. Farmanov, and S. Markovic, Khalifa University of Science and Technology. The paper has been peer reviewed and is available as Open Access in SPE Journal on OnePetro.