读取地下数据的字里行间

新的地下软件开发正在帮助运营商在井相关性之间创建更高分辨率。

使用光谱颜色方案来关联测井数据,可以轻松跟踪井之间测井响应的细微变化,并且与单独地震相比能够实现更高的理解分辨率。(来源:劳埃德船级社)

提出者:

勘探与生产标志

编者注:本文出现在新的 E&P 时事通讯中。请在此处订阅勘探与生产通讯 


势场的定义从来没有——也可能永远不会——一成不变。经济形势经常随着世界碳氢化合物市场的变化而变化。

另一方面,地下定义——岩石物理学、地震数据、地质和油井数据——最终拥有更清晰、更明确的线条。然而,勘探与生产公司越来越能够在这些生产线之间进行观察,以了解更进一步、相邻的生产机会可能存在于何处。

催化剂?获取了数以百万计的历史和生命周期数据,以及地下软件的发展,以分析这些数据并从中汲取见解。 

过去,运营商需要钻多口井才能了解油田的可行性。现在,由于有数千口历史井及其各自现有的数据(包括生产数据和干燥数据),通常可以在钻井之前推断出对下面地质和结构的相同类型的见解。通过数字化转型以及随之而来的油井集成、可视化、机器学习和解释软件的发展,这些见解变得更加可能,例如劳埃德船级社的交互式相关 (IC) 和交互式岩石物理 (IP) 地下软件包。 

这些地下软件应用程序将不同的数据源汇集到一个地方,使操作员能够关联、绘制和解释数据,以深入了解整个地理区域的地下特征,而不仅仅是来自单个井的单个数据。该软件使操作员能够比以往更准确、更迅速地缩小潜在机会的范围,而不是花费数月或数年的时间来钻取数据。

随着细节的深入,金融家将更有信心投资勘探工作,运营商预计未来钻探的干井或边际井数量将减少,现有油田的碳氢化合物采收率将增加。

在地图上可视化灵活数据查询的结果,以及解释的地震表面、网格和其他数据分析,可以提高识别潜在目标区域的效率,无论潜力要求是什么。

劳埃德船级社 IC 地下地图
在空间上可视化数据查询结果以及数据分析和解释的地震面和断层有助于识别新的或错过的潜力。(来源:劳埃德船级社)

一旦确定了潜在的感兴趣区域,就可以直接开始关联和解释井数据,同时考虑井解释中的沉积学和沉积环境,以完成对该区域的地质了解。

潜在的原地碳氢化合物体积可以通过结合碳氢化合物饱和度、孔隙度和渗透率的岩石物理特性(源自穿透模拟油藏的井)以及油藏高度和面积来确定。 

在开发地下软件包时,劳埃德船级社专注于以直观、视觉冲击力和交互的方式提供高质量、快速的解释,但又不会过于复杂。该软件提供了一种将数据集合并到工作流程中的简单方法,并为跨职能团队提供了协作的机会。利用人类对视觉显示数据的固有兴趣,可以以 2D 或 3D 方式询问地下解释,帮助用户更轻松地理解地层学和相关性。

软件开发以法医风格方法为基础,用于分析地下特征;用户根据现有证据推断出最准确的解释,为进一步查询提供线索。  

Lloyds Register 的 IC 和 IP 地下软件包已被全球许多领先的石油和天然气运营商、咨询公司和服务公司在许多不同且复杂的地质环境中成功使用,以帮助识别现有油田错失的支付机会并识别潜在油田。  

经过过去 25 年的开发,IC 和 IP 软件产品随着技术、数据和工作流程的进步而不断发展,经常带来许多行业第一,包括:

  • 上世纪 90 年代整个工作流程的完全蒙特卡罗不确定性;
  • 最新的非统计机器学习算法称为域变换分析;和 
  • 2021 年,将一种利用钻孔图像进行纹理分析的新方法推向市场。

该软件将继续开发并计划推出许多新功能。 

适应不断变化的世界

最近的更新不仅仅适用于潜在碳氢化合物领域的勘探和评估。运营商越来越多地面临着应对成熟行业和能源转型挑战的决策。

地热能潜力、矿物开采以及碳捕获利用和储存等新机遇意味着运营商正在以新的方式分析数据,以跟上不断变化的世界的步伐。无需额外数据或软件投资即可做出这些初始决策,使运营商能够在不增加运营成本的情况下保持领先。 

运营商在其各种勘探与生产活动的生命周期中整理的现有数据中仍然隐藏着无数未开发的机会。如果不将所有数据整合在一起,这些机会可能会永远隐藏起来。然而,随着油井集成、可视化和解释软件的发展,对于运营商来说,现在是利用数据做出新发现并释放能源转型新机遇的最佳时机。

相关内容:

根据地震数据预测岩石地质力学性质

岩石物理诊断:成功建模的先决条件

人工智能平台加速油藏机会识别

集成地震叠前数据和通过机器学习增强的井数据

原文链接/hartenergy

Reading Between the Lines of Subsurface Data

New subsurface software developments are helping operators create higher resolution between well correlations.

Using a spectral color scheme to correlate log data, it is easy to track subtle changes in log responses between wells and enable a higher resolution of understanding compared to seismic alone. (Source: Lloyd's Register)

Presented by:

E&P logo

Editor's note: This article appears in the new E&P newsletter. Subscribe to the E&P newsletter here.


The definition of a potential field has never been—and may never be—set in stone. The economics shift frequently in line with the changing whims of the world’s hydrocarbons markets.

On the other hand, the subsurface definition—the petrophysics, seismic data, geology and well data—tends to have cleaner and more defined lines. Yet E&P companies have increasingly been able to look between those lines to understand where further, adjacent production opportunities might lie.

The catalyst? Millions of historic and life-cycle data acquired, and the evolution of subsurface software to analyze and draw insights from it. 

In the past, operators would have needed to drill multiple wells to understand the viability of a field. Now, thanks to the thousands of historical wells and their respective data that now exists, both produced and dry, the same types of insights into the geology and structures below can often be inferred prior to drilling wells. These insights are made even more possible by digital transformation and with it, the evolution of well integration, visualization, machine learning and interpretation software, such as Lloyd’s Register’s Interactive Correlation (IC) and Interactive Petrophysics (IP) subsurface software packages. 

These subsurface software applications bring disparate data sources together into one place, enabling operators to correlate, map and interpret the data for insights into subsurface characteristics across an entire geographical area, going beyond the individual data from a single well. Rather than spend months or years drilling for data, the software enables operators to narrow down the list of potential opportunities more accurately and swiftly than ever before.

With greater depth of detail, financiers will have more confidence to invest in exploration efforts, and operators can expect to see a reduction in the number of dry or marginal wells drilled in the future as well as an increase in the hydrocarbon recovery of existing fields.

Visualizing the results of flexible data queries spatially on a map, alongside interpreted seismic surfaces, grids and other data analysis, increases the efficiency of identifying prospective target areas no matter what the requirements for potential are.

Lloyd's Register IC subsurface map
Visualizing data query results spatially alongside data analysis and interpreted seismic surfaces and faults aids in identifying new or missed potential. (Source: Lloyd's Register)

Once a potential area of interest is identified, it is then straightforward to begin correlating and interpreting the well data, while taking into consideration the sedimentology and depositional setting from the well interpretations to complete the geological understanding of the area.

Potential in-place hydrocarbon volumes can be determined by combining the petrophysical properties of hydrocarbon saturation, porosity and permeability, derived from wells that have penetrated analogue reservoirs, along with reservoir height and area. 

In developing its subsurface software packages, Lloyd’s Register focuses on delivering high-quality, fast interpretations in an intuitive, visually striking and interactive way, without being overcomplicated. The software offers an easy way to combine datasets into workflows and provide opportunities for teams across functions to collaborate. Tapping into the innate human interest in data displayed visually, subsurface interpretations can be interrogated in 2D or 3D, helping users understand stratigraphy and correlations more easily.

The software developments are underpinned by a forensic style approach to analyzing subsurface characteristics; users deduce the most accurate interpretation possible based on the evidence available to provide leads for further enquiry.  

Lloyds Register’s IC and IP subsurface software packages have been successfully utilized by many of the leading oil and gas operators, consultancies and service companies globally in many varied and complex geological settings to help identify missed pay opportunities in existing fields and identify potential fields.  

Developed over the past 25 years, the IC and IP software products have grown with advancing technology, data and workflows, regularly bringing many industry firsts ranging from:

  • A complete Monte Carlo uncertainty of the entire workflow back in the '90s;
  • The more recent non-statistical machine learning algorithm called Domain Transform Analysis; and 
  • Bringing a new approach in 2021 to textural analysis from borehole images to the market.

The software continues to develop with many new features planned. 

Fit for an ever-changing world

The recent updates don’t solely apply to exploration and appraisal of potential hydrocarbon fields. Operators are increasingly faced with making decisions to address the challenges of a maturing industry and the energy transition.

New opportunities, such as geothermal energy potential, mineral extraction and carbon capture utilization and storage, mean operators are analyzing data in new ways to keep pace in an ever-changing world. To make those initial decisions without the need for additional data or software investment enables operators to keep ahead without increasing operational costs. 

Myriad untapped opportunities remain hidden in the existing data that operators have collated over the life cycles of their various E&P activities. Without bringing all the data together, these opportunities may remain hidden for good. However, with the evolution of well integration, visualization and interpretation software, there has never been a better time for operators to leverage their data to make new discoveries and unlock new opportunities for the energy transition.

RELATED CONTENT:

Geomechanical Rock Properties Prediction from Seismic Data

Rock Physics Diagnostics: A Prerequisite for Successful Modeling

Artificial Intelligence Platform Accelerates Reservoir Opportunity Identification

Integrating Seismic Prestack and Well Data Augmented through Machine Learning