储层表征

Ikon Science 推出全新 4D 反演技术

地震和油井数据调查工具集成了工作流程,以提供一致的储层分析。

图标.jpg
资料来源:Ikon Science

Ikon Science 是一家地理预测和开放式地下知识管理软件和服务提供商,推出了最先进的 4D 反演技术工具。该地震和油井数据调查工具是 Ikon 地理预测软件平台 RokDoc 2023.3 的特色功能。

“Ikon 的 QI 应用产品经理 Alan Mur 表示:“Ikon 的 QI 应用程序产品经理 Alan Mur 表示,“IkonDoc 2023.3 利用用户洞察进一步增强了 Ikon 的一流技术并使核心工作流程现代化,使我们能够在 4D 油藏监测方面引领地球科学界。”图标科学。“我们的重点是帮助所有用户以最少的努力找到最佳答案。”

随着地下勘探变得越来越复杂,出错的空间越来越小。对于勘探和生产活动,定量解释工作流程不仅必须对特性进行精确预测,还要对不确定性有良好的理解。Ikon 的 Time-Lapse Ji-Fi 应用程序为生产和注入场景提供完整的 4D 流体跟踪功能,适用于大多数碳氢化合物生产活动以及碳捕获、使用和储存 (CCUS) 工作。新应用程序提供工作流程集成,以实现一致的油藏 4D 分析。

随着新的岩石物理模型解锁了更大系列的地质作用和工作流程的功能,捕获压实和粘土演化的额外沙子、页岩和碳酸盐岩石物理模型已添加到 RokDoc 和岩石物理建模功能 (RPML) 库中。此外,用于裂缝密度可行性和预测的新裂缝碳酸盐岩物理模型简化了数据共享以及与地质力学工作流程的集成。

新的交叉图显示选项、更轻松的数据管理输入过滤器以及更新的概率密度函数管理系统增强了可用性。Ji-Fi 和许多其他依赖于相分类的岩石物理工作流程现在更容易使用新的、每个工作间隔的一维、二维和深度趋势贝叶斯先验比例输入。这些以用户为中心的进步使得文档和摘要图可以轻松重复以进行测试比较,从而可以快速完善和改进模型。

深度 QI 机器学习和岩石物理功能自动化通过 XGBoost 进行了扩展,现在与网格搜索相结合以进行参数调整。这种机器学习属性预测和自动化 RPML 算法得到进一步增强,可以直接校准岩石物理模型中的矿物体积。这些增强功能提高了工作流程效率,为能源公司带来直接价值。

原文链接/jpt
Reservoir characterization

Ikon Science Reveals New 4D Inversion Technology

The seismic and well data investigation tool integrates work flows to provide a consistent analysis of reservoirs.

Ikon.jpg
Source: Ikon Science

Ikon Science, a provider of geoprediction and open subsurface knowledge management software and services, has introduced its state-of-the-art 4D inversion technology tool. This seismic and well data investigation tool is featured in RokDoc 2023.3, Ikon’s geoprediction software platform.

“RokDoc 2023.3 has leveraged user insights to further enhance Ikon’s best-in-class technologies and modernize core work flows, enabling us to lead the geoscience community in 4D reservoir monitoring,” said Alan Mur, product manager for QI Applications at Ikon Science. “Our focus is on helping all of our users find the best answers with the least effort.”

As subsurface exploration becomes increasingly complex, there’s less room for error. For exploration and production activities, quantitative interpretation work flows must produce not only a precise prediction of properties but also a good understanding of uncertainties. Ikon’s Time-Lapse Ji-Fi app offers complete 4D fluid-tracking capabilities for production and injection scenarios and is applicable in most hydrocarbon-production campaigns and carbon capture, use, and storage (CCUS) efforts. The new app provides integration of work flows for a consistent 4D analysis of reservoirs.

As new rock physics models unlock functionality to a larger family of geologic plays and work flows, additional sand, shale, and carbonate rock physics models that capture compaction and clay evolution have been added to the RokDoc and rock physics modeling function (RPML) libraries. Also, a new fractured carbonate rock physics model for feasibility and prediction of fracture density streamlines data sharing and integration with geomechanics work flows.

Useability is enhanced with new cross-plot display options, input filters for easier data management, and a refreshed probability density function management system. Ji-Fi and many other rock physics work flows that rely on facies classification are now easier to use with new, per-working-interval prior proportion inputs for 1D, 2D and Depth Trend Bayesian. These user-centric advances make documentation and summary plots easily repeatable for test comparisons so the models may be rapidly refined and improved.

Deep QI machine learning and rock physics functions automation is expanded with XGBoost, which is now combined with grid search for parameter tuning. This machine learning property prediction and automated RPML algorithm is further augmented to directly calibrate mineral volumes in rock physics models. These enhancements drive work flow efficiencies to deliver immediate value to energy companies.