岩石物理诊断:成功建模的先决条件

澳大利亚近海案例研究展示了使用三种质地不同的砂岩的岩石物理诊断工作流程。

(来源:CGG)

提出者:

勘探与生产标志

编者注:本文出现在新的 E&P 时事通讯中。请在此处订阅勘探与生产通讯 。 


岩石物理建模作为定量解释研究的基本组成部分被广泛实践。岩石物理模型将岩石的储层特性与其弹性特性联系起来。通过岩石传播的地震波直接受到其弹性特性的影响。因此,岩石物理模型可以将钻孔中测量的井数据与地面测量的地震振幅联系起来。

什么控制着弹性特性?

岩石的弹性特性主要由其成分和质地控制。岩石成分取决于矿物类型、孔隙度和填充孔隙的液体。孔隙流体的弹性特性又受到流体类型和成分、饱和度、分布和相等许多因素的影响。岩石结构由矿物的分布和排列、颗粒的排序、颗粒之间的接触、胶结和孔隙的形状决定。岩石结构,特别是分选和胶结作用,受到地质和成岩过程的影响。此外,弹性特性还受到外部因素的影响,包括温度、压力和诱导应力等环境条件以及传播地震波的频率。

地质过程如何影响弹性特性?

碎屑沉积岩是由原有岩石风化和侵蚀的沉积物形成的,这些沉积物随后通过河流系统或风驱动的机械作用输送,最终沉积在河流、三角洲、海洋和风成等各种环境中。岩石结构的变化是由许多地质过程引起的,例如由于分选过程导致的不同粒度和由于磨损过程导致的颗粒棱角。初始沉积后,沉积物被物理压实,导致孔隙率降低和弹性性能增加。随着温度升高,发生的化学过程会导致矿物学变化,例如粘土矿物蒙皂石转变为伊利石(Avseth 等,2008)。胶结作用是一种常见的成岩过程,发生在各种矿物类型的胶结物沉淀到间隙孔隙空间中,有时覆盖颗粒的情况。胶结作用对固结岩石的形成具有重大影响,并导致弹性性能显着增加。 

应使用哪种岩石物理模型?

许多岩石物理模型已经发表,从通过经验观察解释的简单关系到先进的理论模型。高级模型包括考虑岩石的成分和结构、将弹性特性与储层特性联系起来的有效介质模型,以及由两个或多个经验和/或理论模型组合而成的混合模型。混合模型通常基于岩石物理工作流程来处理不同的地质环境。 

本研究表明,在岩石物理建模研究中选择模型时,建议执行岩石物理诊断工作流程,以便更好地了解地质环境和约束。该数据集来自澳大利亚近海北卡那封盆地的 West Tryal 岩石,重点关注来自 Mungaroo 地层的三种含烃砂岩,即 M、N 和 O(Mathur,2018)。 

岩石物理诊断是岩石物理建模的先决条件

岩石物理诊断使我们能够研究控制岩石形成方式及其弹性特性的地质和成岩过程。这些诊断涉及使用扫描电子显微镜、薄片、岩心、电缆测井和露头测量来调查各种尺度的数据,然后与已发表的岩石物理模型进行比较,并通过对岩石的地质理解进行验证,例如其排序、胶结和圆度。

CGG GeoSoftware 在其 RockSI 岩石物理程序中实施了易于使用的岩石物理诊断工具(Allo,2019)。提供多种参数灵活调整的岩石物理模板,供用户对各种沉积环境中的各种岩石类型进行岩石物理诊断。

图 1 显示了基于薄片显微照片的岩相解释示例,该解释随后用于补充岩石物理诊断。

可以进行许多观察,例如矿物的类型及其分布;颗粒特征,包括颗粒之间的接触程度及其棱角;胶结物的存在,包括对水泥粘结力有影响的水泥类型、胶结物体积和水泥分布;孔隙的体积、形状和分布对岩石的弹性特性有显着影响。

这些观测结果可以用作约束岩石物理建模参数的参考。

CGG岩石物理
图 1. 特写图像描绘了基于薄片显微照片的岩相解释(左:M 砂岩;右:O 砂岩)。总体而言,胶结程度较低,石英是主要胶结物类型。水泥大多不与其他颗粒接触。颗粒的棱角度相当高。(来源:CGG GeoSoftware)

图 2 显示了基于孔隙度与横波速度交会图的岩石物理诊断示例。这三块砂岩上覆盖着来自恒定水泥模型(Avseth,2000)的岩石物理模板。观察到的胶结和分选趋势与孔隙率与弹性模量的插图交会图中的趋势相当(根据 Avseth 等人,1999 年)。三种砂岩交会图的诊断结果与地质研究的观察结果一致,其中 M 砂岩分选程度中等;N砂岩的分选程度较差至中等;O 砂岩主要分选较差(Mathur,2018)。

CGG岩石物理
图 2. 上图描述了基于孔隙度与横波速度交会图(左)的三种砂岩的岩石物理诊断。蓝色:M砂岩;绿色:N砂岩;和粉红色:哦砂岩。(来源:CGG GeoSoftware)

图3显示了基于不同岩石纹理的M、N和O砂岩的岩石物理诊断,包括配位数(每个给定颗粒的平均接触数)、颗粒棱角和胶结物粘聚力(与接触胶结物的分布有关)。这些诊断指示不同的地质参数,并且可以用作岩石物理建模以及对建模参数的敏感性分析的起点。

CGG

CGG

CGG岩石物理
图 3. 基于孔隙度与 S 波速度交叉图的 M(蓝色)、N(绿色)和 O(粉色)砂岩的岩石物理诊断,叠加了不同的结构趋势。(来源:CGG GeoSoftware)

具有定制地质约束的弹性特性的岩石物理建模

在岩石物理建模步骤中,使用之前执行的所有诊断,并设置建模参数以满足地质约束并尊重岩心分析、沉积学和地层研究、流体测试和分析以及温度和压力数据的岩相观察结果。

CGG 的 RockSI 拥有丰富的矿物和流体特性库以及适用于各种地质情况的广泛的岩石物理模型目录。此外,可以按相和/或按区域进行建模,以处理独立于邻近实体的非常复杂的沉积环境。

基于岩石物理诊断,以下岩石纹理被纳入 M、N 和 O 砂岩的岩石物理建模中:

  • 晶粒棱角:如薄片图像所示,形状为次棱角至圆形,其中使用0.7的晶粒棱角。
  • 水泥内聚力:薄片图像表明水泥在颗粒表面过度生长,但在颗粒接触处没有过度生长,因此使用 0.6 的水泥内聚因子。
  • 水泥量:肉眼观察薄片图像表明平均水泥量相当低;岩石物理诊断表明,平均水泥体积约为4.5%,点计数数据也证实了这一点(表1),因此采用平均水泥体积5%。
  • 分选趋势:岩石物理诊断表明,从砂岩 M 到砂岩 O,分选恶化,这与点计数数据一致(表 1)。 

金沙

轨迹排序测量

(值越高=排序越差)

石英水泥(%)

中号

1.92

5.7

2.01

3.4

2.11

4.5

表 1 显示了 M、N 和 O 砂岩的晶粒分选和石英胶结物体积数据。

为这三种砂岩构建的最终岩石物理模型如图 4 所示。

CGG岩石物理
图 4. 为三种砂子构建了最终的岩石物理模型。(来源:CGG GeoSoftware)

结论

该案例研究展示了使用三种质地不同的砂岩的岩石物理诊断工作流程。岩石物理诊断是通过尊重岩相观察和基于对沉积和成岩等地质过程的理解的详细岩石纹理分析以及可用的岩石物理模型来进行的。通过岩石物理诊断了解地质约束对于选择最合适的岩石物理模型进行研究以及设置建模参数至关重要。


参考

Allo, F.,2019。巩固岩石物理学经典:颗粒有效介质模型的实用研究,前沿,334-340。

Avseth, P.、Dvorkin, J.、Mavko, G. 和 Rykkje, J.,1999。北海砂岩的岩石特性诊断:微观结构和地震特性之间的联系。

Avseth, P., 2000。结合岩石物理学和沉积学来表征北海浊积岩系统的地震储层。博士 论文,斯坦福大学,美国。

Avseth, P.、Dr Bussge, A.、van Wijngaarden, A.-J.、Johansen, TA 和 Jaserstad, A., 2008。页岩物理及其对 AVO 分析的影响:北海演示。前沿 27、788—797。

Mathur, A.,2018,地质约束岩石物理建模,GEO India 2018,AU488。


CGG的相关内容:

2021 年 1 月 4 日: 流程和解释:提供关键数据可见性

2021 年 2 月 1 日:  CGG 的 GeoVerse 将数十年可供分析的数字化地球科学数据交付到您的桌面

2020 年 11 月 2 日:  CGG 的 ResPack HD 成为优化布井和生产的基准地震反演技术

原文链接/hartenergy

Rock Physics Diagnostics: A Prerequisite for Successful Modeling

An offshore Australia case study demonstrates a rock physics diagnostics workflow using three texturally different sandstones.

(Source: CGG)

Presented by:

E&P logo

Editor's note: This article appears in the new E&P newsletter. Subscribe to the E&P newsletter here


Rock physics modeling is widely practiced as a fundamental component of quantitative interpretation studies. A rock physics model relates a rock’s reservoir properties to its elastic properties. Seismic waves propagating through rocks are directly influenced by their elastic properties. A rock physics model can therefore link well data measured in the borehole to seismic amplitudes measured at the surface.

What controls elastic properties?

The elastic properties of a rock are mainly controlled by its composition and texture. Rock composition depends on the type of minerals, porosity and fluids filling the pores. Elastic properties of pore fluids in turn are influenced by many factors such as fluid type and composition, saturation, distribution and phase. Rock texture is determined by the distribution and arrangement of minerals, the sorting of grains, contacts between the grains, cementation, and the shape of the pores. Rock texture, particularly sorting and cementation, is influenced by geological and diagenetic processes. In addition, elastic properties are affected by external factors including environmental conditions such as temperature, pressure and induced stresses, and the frequency of the propagating seismic waves.

How do geological processes influence elastic properties?

Clastic sedimentary rocks were formed by sediments from weathering and erosion of preexisting rocks that were subsequently transported by mechanical agents, either through river systems or wind-driven, and eventually deposited in various environments such as fluvial, deltaic, marine and eolian. Variations in rock texture are caused by many geological processes, such as different grain size due to the sorting process and grain angularity due to the abrasion process. After initial deposition, sediments are physically compacted causing a reduction in porosity and an increase in elastic properties. With increasing temperature, chemical processes occur that result in mineralogical changes, such as the transition of the clay mineral smectite to illite (Avseth et al., 2008). Cementation, a common diagenetic process, occurs where cements of various mineral types are precipitated into interstitial pore space, sometimes coating the grains. Cementation has a major impact on the formation of consolidated rocks and results in a significant increase in the elastic properties. 

Which rock physics model should be used?

Many rock physics models have been published, from simple relationships interpreted through empirical observations to advanced theoretical models. Advanced models include effective medium models that relate elastic properties to reservoir properties with consideration of the composition and texture of the rocks, and hybrid models that are made up of a combination of two or more empirical and/or theoretical models. The hybrid models are typically based on rock physics workflows to handle different geological settings. 

This study demonstrates that, when selecting the model in a rock physics modeling study, performing a rock physics diagnostics workflow is recommended to gain a good understanding of the geological environment and constraints. The dataset comes from the West Tryal Rocks of the North Carnarvon Basin offshore Australia and focuses on three hydrocarbon-bearing sandstones, namely M, N and O, from the Mungaroo Formation (Mathur, 2018). 

Rock physics diagnostics as a prerequisite to rock physics modeling

Rock physics diagnostics allow us to investigate geological and diagenetic processes that control how a rock is formed and its elastic properties. These diagnostics involve the investigation of data from various scales, using a scanning electron microscope, thin sections, core, wireline logs and outcrop measurements, and then comparison with published rock physics models, and validation with a geological understanding of the rock, such as its sorting, cementation and roundness.

CGG GeoSoftware has implemented easy-to-use rock physics diagnostics tools in its RockSI rock physics program (Allo, 2019). A variety of rock physics templates with flexible parameter adjustment are available for users to perform rock physics diagnostics on a wide range of rock types found in various sedimentary environments.

Figure 1 shows an example of a petrographic interpretation based on photomicrographs of thin sections, which is subsequently used to complement rock physics diagnostics.

A number of observations can be made, such as the type of minerals and their distribution; grain characteristics, including degree of contact between grains and their angularity; the presence of cementation, including types of cement, volume of cementation and distribution of cements that have an impact on cement cohesion; and the volume of pores, their shape and distribution that significantly impact the rock’s elastic properties.

These observations can later be used as a reference to constrain the rock physics modeling parameters.

CGG rock physics
FIGURE 1. The closeup image depicts petrographic interpretation based on photomicrographs of thin sections (left: M sandstone; right: O sandstone). Overall, the degree of cementation is low with quartz being the predominant cement type. The cement is mostly not in contact with other grains. Angularity of grains is quite high. (Source: CGG GeoSoftware)

Figure 2 shows an example of rock physics diagnostics based on a porosity versus S-wave velocity crossplot. The three sandstones were overlain with a rock physics template from the Constant-Cement Model (Avseth, 2000). The observed cementation and sorting trends were comparable with the trends in the inset crossplot of porosity versus elastic modulus (after Avseth et al., 1999). Diagnostics from the crossplot for the three sandstones were consistent with observations from the geological study where the M sandstone is moderately well sorted; the N sandstone is poorly to moderately sorted; and the O sandstone is predominantly poorly sorted (after Mathur, 2018).

CGG rock physics
FIGURE 2. Rock physics diagnostics based on porosity versus S-wave velocity crossplot (left) for three sandstones are depicted above. Blue: M sandstone; Green: N sandstone; and Pink: O sandstone. (Source: CGG GeoSoftware)

Figure 3 shows rock physics diagnostics for the M, N and O sandstones based on different rock textures, including coordination number, which is the average number of contacts per given grain, grain angularity and cement cohesion, which relates to the distribution of contact cement. These diagnostics are indicative of different geological parameters and can be used as starting points for rock physics modeling as well as sensitivity analysis to the modeling parameters.

CGG

CGG

CGG rock physics
FIGURE 3. Rock physics diagnostics for M (blue), N (green) and O (pink) sandstones based on porosity versus S-wave velocity crossplots are overlaid with different textural trends. (Source: CGG GeoSoftware)

Rock physics modeling of elastic properties with tailored geologic constraints

In the rock physics modeling step, all diagnostics performed earlier are used and the modeling parameters are set to meet geologic constraints and honor petrographic observations from core analysis, sedimentology and stratigraphic studies, fluid tests and analysis, and temperature and pressure data.

CGG's RockSI has a rich library of mineral and fluid properties as well as an extensive catalog of rock physics models for various geological scenarios. In addition, modeling can be performed per facies and/or per zone to handle very complex depositional settings independent of neighboring entities.

Based on rock physics diagnostics, the following rock textures were incorporated into rock physics modeling on sandstones M, N and O:

  • Grain angularity: sub-angular to rounded in shape as shown in thin section images, where a grain angularity of 0.7 was used.
  • Cement cohesion: thin section images indicate cement overgrowth on the grain surface but not at the grain contacts, so a cement cohesion factor of 0.6 was used.
  • Cement volume: visual inspection of thin section images indicates that average cement volume is quite low; rock physics diagnostics indicate that average cement volume is about 4.5%, which is also confirmed by point count data (Table 1), so an average cement volume of 5% was used.
  • Sorting trend: rock physics diagnostics indicate that sorting deteriorates from sandstone M to sandstone O, which is consistent with point count data (Table 1). 

Sands

Trask Sorting Measurement

(Higher value = poorer sorting)

Quartz Cement (%)

M

1.92

5.7

N

2.01

3.4

O

2.11

4.5

Table 1 displays grain sorting and quartz cement volume data for M, N and O sandstones.

The final rock physics model constructed for the three sandstones is shown in Figure 4.

CGG rock physics
FIGURE 4. A final rock physics model was constructed for the three sands. (Source: CGG GeoSoftware)

Conclusion

This case study demonstrated a rock physics diagnostics workflow using three texturally different sandstones. The rock physics diagnostics were performed by honoring both petrographic observations and detailed rock texture analysis based on an understanding of geological processes such as deposition and diagenesis, with respect to available rock physics models. Understanding the geological constraints through rock physics diagnostics is critical to the selection of the most appropriate rock physics model for the study as well as in setting the modeling parameters.


References

Allo, F., 2019. Consolidating rock-physics classics: A practical take on granular effective medium models, The Leading Edge, 334-340.

Avseth, P., Dvorkin, J., Mavko, G. and Rykkje, J., 1999. Rock property diagnostics of North Sea sands: Link between microstructure and seismic properties.

Avseth, P., 2000. Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems. Ph.D. Thesis, Stanford University, USA.

Avseth, P., Dræge, A., van Wijngaarden, A.-J., Johansen, T.A. and Jørstad, A., 2008. Shale rock physics and implications for AVO analysis: A North Sea demonstration. The Leading Edge 27, 788–797.

Mathur, A., 2018, Geology constrained rock physics modeling, GEO India 2018, AU488.


RELATED CONTENT BY CGG:

Jan. 4, 2021: Process & Interpretation: Providing Crucial Data Visibility

Feb. 1, 2021: CGG’s GeoVerse Delivers Decades of Analytics-Ready Digitally Transformed Geoscience Data to Your Desktop

Nov. 2, 2020: CGG’s ResPack HD Becomes a Benchmark Seismic Inversion Technology for Optimizing Well Placement and Production