编队评估

机器学习方法有助于源岩评估

总有机碳 (TOC) 等地球化学参数为了解岩石有机丰富度和成熟度提供了宝贵的信息,从而优化碳氢化合物勘探。本文提出了一种利用机器学习预测连续高分辨率 TOC 剖面的新颖工作流程。

具有 3D 几何形状、照明球体、岩石背景的抽象框架
资料来源:Akinbostanci/Getty Images

地球化学参数是提高有机丰富区预测精度的关键数据集。然而,目前获得这些测量结果的实验​​室分析方法成本高昂且耗时。虽然存在丰富的知识和方程来估算电缆测井中的总有机碳 (TOC),但新的研究工作仍在继续,特别是利用机器学习 (ML) 来预测电缆测井中的地球化学参数。然而,这些方法在很大程度上依赖于数据的可用性和质量。TOC 等地球化学参数为了解岩石有机丰富度和成熟度提供了宝贵的信息,从而优化碳氢化合物勘探。

TOC 可以定义为岩石中有机物的含量。有机质是烃源岩评价中最重要的组成部分。因此,了解 TOC 的变化对于评估烃源岩质量、识别富有机质区和增强非常规储层表征非常重要。以前,使用测井进行数学计算有助于估算 TOC 值和确定烃源岩产能Passey 等,1990)。该解释导致了有机含量和成熟有机丰富区间的识别。使用测井计算 TOC 的两种方法是声波/电阻率比(Ahangari 等人,2022)和测井组合(Fertl 等人,1988)。这些方法提供了对烃源岩释放碳氢化合物能力的评估。由于这些方法的局限性,本文提出了一种新颖的工作流程,使用 ML 预测连续的高分辨率 TOC 剖面,只需几分钟。该方法有助于提高地球化学参数预测的精度。它是非破坏性的,并且只需要很少的实验室测试。

背景
TOC 是识别岩层中富含有机质区域和烃源岩特征的关键参数。实验室测量的 TOC 数据的一个重要限制是,由于分析的破坏性,这些测量结果是离散且分散的,并且不能覆盖整个感兴趣的区域。包含颜色属性的图像也可以合并到工作流程中,以帮助预测地球化学参数。引入了机器学习工作流程来检测和可视化不同的地球化学参数,以非破坏性的方式增强富含有机质带的表征(Shalaby 等人,2019)。在这里,我们展示了一个 ML 工作流程,该流程使用岩心图像和 TOC 实验室数据及时生成连续的高分辨率 TOC 配置文件。

方法
核心照片被分解为熵和颜色属性(红色、绿色和蓝色曲线)。使用移动平均窗口来提取属性的连续视觉曲线。这些属性与实验室使用 Rock Eval 热解仪器测量的相应 TOC 测量值相匹配。

工作流程由两个 ML 算法组成。第一个算法是无监督 K 均值聚类,它使用提取的熵和颜色曲线作为输入。这根据提取的属性生成了连续的聚类曲线。根据先前对岩心 TOC 测量的了解,选择了岩石簇的数量。例如,确定了不同的 TOC 测量值,其中包括高值、中值和低值。在这种情况下,生成的簇的数量将为三个。此方法可用于直接对具有高 TOC 值的区间进行分类。第二种算法应用支持向量回归 (SVR),提取的属性与 TOC 值相关。该方法使用 80% 的数据来训练模型,20% 的数据用于模型的盲测和验证。最终结果可用于生成连续的高分辨率 TOC 剖面(图 1)。

RockEval_Fig1.jpg
1—— 预测 TOC 概况的 ML 工作流程草图。
资料来源:沙特阿美公司

结果
工作流程产生了有希望的结果,包括通过机器学习算法以非破坏性方式获得源岩层段的连续高分辨率 TOC 剖面(图 2)。结果显示,成功生成了连续 TOC 剖面,预测精度为 90%,测量数据的±1% 以内(图 3)。使用一致的高质量图像以及适当的数据分布可以帮助产生具有高度预测准确性的结果。基于高质量图像和广泛的数据分布构建和训练模型可以增强预测结果,并最终改善有机丰富区和非常规资源的表征(Peters et al. 2016)。

RockEval_Fig2.jpg
图 2’ TOC 的ML工作流程预测结果。核心照片和离散实验室测量是主要输入(左)。图像属性分析和熵(中)。最终输出是基于图像特征的 TOC 值的 K 均值聚类和 TOC 剖面的连续高分辨率预测(右)。
资料来源:沙特阿美公司

机器学习工作流程预测了烃源岩层段的准确 TOC 剖面。此外,获得用于训练的大型数据集有助于以经济高效的方式生成准确的 TOC 测定结果,同时减少实验室测试并且不会破坏岩石样品。这种无损、快速的方法优化了 TOC 的准确识别,可以直接影响富有机质区的分类,从而改善烃源岩表征。工作流程的另一个含义是使用为单口井生成的 TOC 剖面,并将其应用于校准具有相似地质和地球化学属性的偏置井的其他 TOC 测量结果。最终,这一预测可以帮助在几分钟内以经济有效的方式加强碳氢化合物勘探。

RockEval_Fig3.jpg
图 3’测量与预测的 TOC 交叉图。预测精度为90%,测量数据±1%以内;其中 y = x 是预测值等于真实值的 1:1 线,y = x+1 是预测值高于真实值 1% 的线,y = x−1 是预测值等于真实值的线比真实值低 1%。
资料来源:沙特阿美公司

摘要与结论为了了解烃源岩的丰富度及其释放碳氢化合物的能力,分析地球化学参数至关重要,它可以区分岩石中有机质的含量并检测岩石的成熟度( Tissot et al. 1987 )。因此,分析 TOC 和其他地球化学参数对于了解烃排出速率的可能性至关重要(Carvajal-Ortiz 等,2018)。岩石单元内不同地球化学参数测量的存在决定了有机岩石含量的变化,因此增强了有机丰富区域的识别(Peters 等,2010)。这些参数对于识别碳氢化合物的来源和类型起着重要作用。

尽管实验室地球化学数据可以很好地了解岩石化学含量,但使用机器学习应用程序来识别和量化地球化学参数可能是一种经济高效的工具,可以提供输入和参数来增强烃源岩表征和油田开发。该工作流程展示了成功生成的连续高分辨率 TOC 剖面,其预测准确度高达 90%,且及时且经济高效。结果表明,使用机器学习工作流程估算地球化学参数具有巨大潜力。该工作流程的实施是为了以非破坏性方式及时评估和预测 TOC。该方法还可用于预测和校准附近油井的 TOC 值 ( Bath 2002 ),并建议使用足够的数据分布和卓越的图像质量来实现更高的预测。


参考文献
Ahangari, D.、Daneshfar, R.、Zakeri, M.、Ashori, S. 和 Soulgani, BS 2022。使用 AFIS 和 LSSVM 策略考虑测井参数来预测地球化学参数(TOC、S1 和 S2)石油8(2),174-184。

Bath, A. 2002。SKB场地表征计划所需的地球化学参数瑞典。

Carvajal-Ortiz, H. 和 Gentzis, T. 2018。烃源岩和储层的地球化学筛选:使用正确分析程序的重要性国际煤炭地质杂志,190,56—69。

Fertl, WH 和 Chilingar, GV (1988)。根据测井曲线测定总有机碳含量SPE 地层评价3(02),407—419。

Passey, QR、Creaney, S.、Kulla, JB、Moretti, FJ 和 Stroud, JD 1990。根据孔隙度和电阻率测井计算有机丰富度的实用模型AAPG 公报74 (12), 1,777-1,794.”

Peters, KE、Walters, CC 和 Moldowan, JM 2010。生物标志物指南(第 1 卷)剑桥大学出版社。”

Peters, KE、Xia, X.、Pomerantz, AE 和 Mullins, OC 2016。地球化学应用于非常规资源评估非常规油气资源手册,71'126。海湾专业出版社。

Shalaby, MR、Jumat, N.、Lai, D. 和 Malik, O. 2019。利用机器学习、测井和地球化学分析进行综合 TOC 预测和烃源岩表征:Shams 油田侏罗纪烃源岩案例研究,埃及西北沙漠石油科学与工程, 176, 369~380.

Tissot, BP、Pelet, R. 和 Ungerer, PH 1987。沉积盆地的热史、成熟度指数以及石油和天然气生成动力学AAPG 公报71 (12), 1,445 - 1,466.”

原文链接/jpt
Formation evaluation

Machine Learning Approach Aids Source Rock Evaluation

Geochemical parameters such as total organic carbon (TOC) provides valuable information to understand rock organic richness and maturity and, therefore, optimize hydrocarbon exploration. This article presents a novel work flow to predict continuous high-resolution TOC profiles using machine learning.

Abstract Frame with 3D Geometric Shapes, Illuminated Spheres, Rock Background
Source: Akinbostanci/Getty Images

Geochemical parameters are crucial data sets to enhance prediction accuracy of organic rich zones. The current laboratory analysis methods of obtaining these measurements, however, are costly and time-consuming. While there exists a rich body of knowledge and equations for estimating total organic carbon (TOC) from wireline logs, new research efforts are continuing, especially leveraging machine learning (ML), to predict geochemical parameters from wireline logs. These methods, however, rely heavily on data availability and quality. Geochemical parameters such as TOC provide valuable information to understand rock organic richness and maturity and, therefore, optimize hydrocarbon exploration.

TOC can be defined as the amount of organic content in a rock. Organic matter is the most important component in source rock evaluation. Understanding variations in TOC, therefore, is important for evaluating hydrocarbon source rock quality, identifying organic rich zones, and enhancing unconventional reservoirs characterization. Previously, mathematical calculations using logs helped in estimating TOC values and determining source rock productivity (Passey et al. 1990). The interpretation led to the identification of organic content and mature organic rich intervals. Two of the ways to calculate TOC using logs are the sonic/resistivity ratio (Ahangari et al. 2022) and log combinations (Fertl et al. 1988). These approaches provide assessment of source rock ability to release hydrocarbons. Because of the limitations of these methods, this article presents a novel work flow to predict continuous high-resolution TOC profiles using ML, taking only few minutes. This approach helps increase the precision of the geochemical parameter predictions. It is nondestructive and requires minimal need for laboratory testing.

Background
TOC is a critical parameter for the identification of organic rich zones and source rock characterization in a rock formation. One important limitation of laboratory-measured TOC data is the fact that these measurements are discrete and scattered and do not cover the entire area of interest because of the destructive nature of the analysis. Images containing color attributes also can be incorporated into the work flow to help in predicting geochemical parameters. An ML work flow has been introduced to detect and visualize different geochemical parameters to enhance organic rich zone characterization in a nondestructive way (Shalaby et al. 2019). Here, we showcase an ML work flow that uses core images and TOC laboratory data to generate continuous high-resolution TOC profiles in a timely manner.

Methodology
Core photos were decomposed into entropy and color attributes (red, green, and blue curves). A moving average window was used to extract continuous visual curves of the attributes. These attributes were matched with their corresponding TOC measurements as measured in the laboratory using the Rock Eval pyrolysis instrument.

The work flow consists of two ML algorithms. The first algorithm is unsupervised K-means clustering, which uses the extracted entropy and color curves as inputs. This generated a continuous curve of clusters based on the extracted attributes. Based on the previous knowledge of the core TOC measurements, the number of rock clusters were selected. For example, different TOC measurements were identified, which includes high, medium, and low values. In this case, the number of clusters generated will be three. This approach is useful to classify intervals with high TOC values directly. The second algorithm applied support vector regression (SVR), with the extracted attributes tied to TOC values. This approach used 80% of the data to train the model and 20% for the blind testing and validation of the model. The final result can be used to produce a continuous high-resolution TOC profile (Fig. 1).

RockEval_Fig1.jpg
Fig. 1—A sketch of the ML work flow to predict a TOC profile.
Source: Saudi Aramco

Results
The work flow generated promising results consisting of continuous high-resolution TOC profiles for source rock intervals through ML algorithms in a nondestructive manner (Fig. 2). The results show successful generation of a continuous TOC profile with 90% prediction accuracy within ±1% of measured data (Fig. 3). Using consistent and high-quality images along with adequate data distribution can help produce results with a high degree of prediction accuracy. Building and training the model based on high-quality images and a wide range of data distribution enhances the predictive results and ultimately improves the characterization of organic rich zones and unconventional resources (Peters et al. 2016).

RockEval_Fig2.jpg
Fig. 2—ML work flow prediction results for TOC. Core photos and discrete laboratory measurements are the main inputs (left). Image attribute analysis and entropy (middle). Final outputs are K-means clustering of TOC values based on image characteristics and continuous high-resolution prediction of TOC profile (right).
Source: Saudi Aramco

The ML work flow predicted accurate TOC profiles for source rock intervals. In addition, obtaining a large data set for training helps in generating accurate results in a cost- and time-effective ways for TOC determination, with fewer laboratory testing and nondestruction of rock samples. This nondestructive and fast approach optimized accurate identification of TOC, which can directly affect organic rich zones classification and, therefore, improve source rock characterization. Another implication of the work flow is to use the generated TOC profile for a single well and apply it to calibrate other TOC measurements for the offset wells with similar geology and geochemical attributes. Ultimately, this prediction can aid in enhancing hydrocarbon exploration in a cost-effective way within a few minutes.

RockEval_Fig3.jpg
Fig. 3—Measured vs. predicted TOC cross plot. The prediction accuracy is 90% within ±1% of measured data; where y = x is the 1:1 line where predicted values equal true values, y = x+1 is the line where predicted values are above the true values by 1%, and y = x−1 is the line where predicted values are below the true values by 1%.
Source: Saudi Aramco

Summary and Conclusions To understand source rock richness and its ability to release hydrocarbons, it is critical to analyze geochemical parameters, which can distinguish the amount of organic matter in a rock and detect rock maturity (Tissot et al. 1987). Thus, analyzing TOC and other geochemical parameters is essential to understanding the possibility of hydrocarbon expulsion rate (Carvajal-Ortiz et al. 2018). The presence of different geochemical parameter measurements within a rock unit determines variations in organic rock content and, therefore, enhances the identification of organic rich zones (Peters et al. 2010). These parameters play an important role in identifying the hydrocarbon source and type.

Although laboratory geochemical data provide a good understanding of rock chemical content, using ML applications to identify and quantify geochemical parameters can be a cost- and time-effective tool, providing inputs and parameters to enhance source rock characterization and field development. The work flow showcases a successfully generated continuous high-resolution TOC profile with a prediction accuracy of up to 90% in a timely and cost-effective way. The result shows a great potential to estimate geochemical parameters using an ML work flow. The work flow is implemented to evaluate and predict TOC in a nondestructive way and in a timely manner. This approach can also be used to predict and calibrate TOC values (Bath 2002) for the nearby wells with the recommendation to use sufficient data distribution and superior image quality for higher prediction.


References
Ahangari, D., Daneshfar, R., Zakeri, M., Ashoori, S., and Soulgani, B.S. 2022. On the Prediction of Geochemical Parameters (TOC, S1 and S2) by Considering Well Log Parameters Using ANFIS and LSSVM Strategies. Petroleum, 8 (2), 174–184.

Bath, A. 2002. Geochemical Parameters Required From the SKB Site Characterisation Programme. Sweden.

Carvajal-Ortiz, H., and Gentzis, T. 2018. Geochemical Screening of Source Rocks and Reservoirs: The Importance of Using the Proper Analytical Program. International Journal of Coal Geology, 190, 56–69.

Fertl, W.H., and Chilingar, G.V. (1988). Total Organic Carbon Content Determined From Well Logs. SPE Formation Evaluation, 3 (02), 407–419.

Passey, Q. R., Creaney, S., Kulla, J. B., Moretti, F. J., & Stroud, J. D. 1990. A Practical Model for Organic Richness From Porosity and Resistivity Logs. AAPG Bulletin, 74 (12), 1,777–1,794.‏

Peters, K.E., Walters, C.C., and Moldowan, J.M. 2010. The Biomarker Guide (Vol. 1). Cambridge University Press.‏

Peters, K.E., Xia, X., Pomerantz, A.E., and Mullins, O.C. 2016. Geochemistry Applied to Evaluation of Unconventional Resources. Unconventional Oil and Gas Resources Handbook, 71–126. Gulf Professional Publishing.

Shalaby, M.R., Jumat, N., Lai, D., and Malik, O. 2019. Integrated TOC Prediction and Source Rock Characterization Using Machine Learning, Well Logs, and Geochemical Analysis: Case Study From the Jurassic Source Rocks in Shams Field, NW Desert, Egypt. Journal of Petroleum Science and Engineering, 176, 369–380.

Tissot, B.P., Pelet, R., and Ungerer, P.H. 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71 (12), 1,445–1,466.‏