通过定量地震分析释放成熟地区的潜力

北海案例研究表明,即使在新的油气藏中,定量反演主导技术也可以通过验证钻前储层情景来降低钻井风险。

(来源:锐利反思)

提出者:

勘探与生产标志

编者注:本文发表在 E&P 时事通讯中。请在此处订阅勘探与生产通讯 


随着越来越多的国家采取净零碳排放目标,化石燃料在世界能源供应总量中的份额预计将下降。石油和天然气产量的收缩预计将导致人们更加关注识别靠近现有基础设施的新资源和开采概念。较年轻的沉积层序中的浅层和以前被忽视的区域正在成为越来越有吸引力的目标。

在这种情况下,叠前地震方法在开发和排名前景中发挥着关键作用,这些方法通常表现出强烈的振幅响应。早期勘探井经常在通往更深目标的过程中记录这些层段,它们提供了理解和校准地震振幅所需的关键弹性岩石特性数据。只需有限的岩石属性信息,叠前模型就可以建立数据中振幅与偏移距(AVO)信号的可靠性并指导解释方法。AVO 属性和反演技术均可用于验证钻前假设并建立对储层岩石和流体性质的钻前预测的信心。

Sharp Reflections 通过最近在挪威近海中新世 Utsira 地层的勘探前景说明了这种分阶段分析方法。叠前技术有助于建立高孔隙度砂岩储层的地震特征,并使用基于相的叠前贝叶斯反演来评估天然气与石油填充的可能性。

案例研究:北海北部 Utsira 地层储层

巨大的 Johan Sverdrup 油田的发现引发了该地区各个地层以基础设施为主导的积极勘探活动。该地区存在 Utsira 组的中新世砂岩,形成了一条宽阔的 NS 走向带,沿着挪威南部海岸的大部分地区延伸。从地层学角度来看,这些可以解释为盆地低位沉积物,上面覆盖着上新世时代厚厚的前进楔形物。

对 Johan Sverdrup 东部和北部合并 3D 勘测的详细 3D 解释揭示了一个预期区域,在勘测的中北部存在相对较厚的 Utsira 地层(图 1)。上乌齐拉以高振幅反射为主,其厚度为几个地震周期。在该区域,最强的反射似乎位于似乎是主要质量流沉积物的顶部附近。质量流复合体的差异压实形成了明显的结构闭合,起伏超过 40 m。 

在内部,Utsira 地层振幅模式很复杂,表明异质岩性、流体和调谐效应之间存在相互作用。需要解开这些问题,以便将钻前风险正确分配给储层的存在、碳氢化合物的存在以及可能的碳氢化合物相(天然气或石油)。

岩石性质标定

伦丁石油公司提供了地震、油井数据和岩石特性信息。从那时起,进行了正演地震模拟,以支持这样的假设:质量流复合体顶部的明亮振幅是由高孔隙率 Utsira 砂岩顶部和底部的反射造成的。3D 勘测中的两口探井均未遇到 Utsira 组砂岩。相反,16/4 区块勘探中的几口井(3D 勘测区域正西)用于确定充满天然气、石油和盐水的 Utsira 地层砂以及上覆和下伏页岩的速度和密度(图 2)。

充满石油或天然气的砂模型都预测各个角度的顶砂和底砂振幅都很强。据预测,油砂的反射率比天然气稍低(取决于石油特性),并且随反射角的变化而稍微变暗。相比之下,卤水砂预计仅表现出较弱的近角响应,并且随着角度的变化更快地变暗。虽然声阻抗和 Vp/Vs 响应都有助于区分相,但单独的声阻抗可能足以区分盐水、石油和天然气情况。

叠前振幅解释

叠前道集用于计算振幅与角度(AVA)属性和角度叠加以进行定量分析。解释后的 Utsira 地层顶部的 AVA 梯度图显示出在任何其他振幅图上未观察到的条纹振幅带(图 2)。它们沿内联方向对齐并指示采集足迹污染。即使在叠前数据调节之后这些仍然存在,并且表明 AVA 梯度反射率可能不足以可靠地跟踪特定事件的 Vp/Vs 反射率对比度的变化。因此,通过同时叠前反演来预测相的定量尝试可能在很大程度上依赖于近角叠层的声阻抗对比。

锐利的反射
从 16/4 区块的井中获得的岩石流体类别显示,含气砂岩与其他砂岩或页岩类别之间的弹性特性存在非常强烈的分离。虽然 AVO 梯度明显受到采集印记的影响,但反演显示红色含气砂岩区域与其他地方的其他岩性之间存在非常明显的区别。(来源:锐利反思)

AVO反演

详细的地震反射率分析表明,这些地图视图振幅模式可能可以通过地质模型来解释,该地质模型具有狭窄的沙球道,上面、下面和侧面都被页岩夹在中间。

为了更详细地研究这一点,Sharp Reflections 使用简单的砂页岩模型进行了叠前地震相反演,并且可以使用盐水、石油或天然气砂的任意组合。

反演产生每个岩印类别的概率体积。结果发现,预测非常明亮的观测到的振幅的唯一模型需要这些区域内的气砂岩层(图 2)。这并不意味着它们是含气砂,而是表明弹性特性与岩石物理模型中包含的含气砂最为一致。

在其他地方,结果表明存在以页岩为主的单元,并预测遇到卤砂或油砂的可能性较低。这可能是由于使用了距该区域一定距离的岩石类和流体特性,这可能无法捕获局部变化的精细细节。尽管如此,如果存在油砂或卤水砂但未被反演识别出来,那么它们的弹性特性可能与页岩具有比在 16/4 区块区域中看到的更大的反差。

在远景中,含气砂总体积估计接近 50 Mm 3,估计柱高为 40 m,这意味着容器已填充至泄漏点。使用 36% 的平均孔隙率(从 Block 16/4 井获得),这意味着孔隙体积为 16.6 Mm 3这是一个规模颇具吸引力的石油前景,但天然气前景则不太有趣。

结论

26/10-1 井测试了中新世 Utsira 组砂岩的油气潜力。该井钻遇Utsira组含气砂岩,储层质量非常好。压力测量表明井处有 36 m 的气柱,与叠前反演的预测一致。

这一结果凸显了基于概率的叠前相反演对于评估成熟勘探区域新的油气藏概念的价值。Sharp Reflections 的大数据软件允许使用所有叠前采集来高效执行这种集成处理和解释工作流程。

叠前方法可以对储层预钻场景进行更严格的测试,并评估天然气与石油的概率。AVA 振幅的严格质量保证清楚地突出了使用 AVA 振幅梯度来区分相的局限性。尽管如此,还是实现了可信的相预测,大概是因为近角数据允许相当准确的声阻抗估计。

这个例子表明,即使在新的油田中,定量反演主导技术也可以通过验证钻前储层情景来降低钻井风险。定量振幅解释在评估和油田开发中发挥着更加重要的作用,因为在井中收集的岩石特性数据可以进行更定量的振幅校准。随着公司寻求提高解释准确性并提高所有领域的回收率,叠前方法的采用将会不断增加。


相关内容:

2021 年 7 月 26 日 AI 和超长偏移更新 Utsira OBN 的故事

2021 年 7 月 23 日 可视化平台打造现场服务项目管理新面貌

2021 年 7 月 20 日 解读地下数据的字里行间

2021 年 7 月 13 日 探索:利用数字化最大化现场成果

2021 年 6 月 22 日 根据地震数据预测岩石地质力学特性

2021年6月14日 人工智能平台加速油藏机会识别

原文链接/hartenergy

Unlocking the Potential of Mature Areas with Quantitative Seismic Analysis

A North Sea case study reveals that even in new plays, quantitative inversion-led techniques can reduce drilling risk by validating predrill reservoir scenarios.

(Source: Sharp Reflections)

Presented by:

E&P logo

Editor's note: This article appears in the E&P newsletter. Subscribe to the E&P newsletter here.


As more countries adopt net-zero carbon emission goals, the fossil fuel share of total world energy supply is expected to decline. This contraction of oil and gas production is expected to lead to an even greater focus on identifying new resources and play concepts that lie close to existing infrastructure. Shallow and previously overlooked plays in younger sedimentary sequences are becoming increasingly attractive targets.

In this setting, prestack seismic methods play a key role in developing and ranking prospects, which often show a strong amplitude response. Early exploration wells often log these intervals on the way to deeper targets, and they provide critical elastic rock property data needed to understand and calibrate seismic amplitudes. With only limited rock property information, prestack models can establish the reliability of the amplitude-versus-offset (AVO) signal in the data and guide the interpretation approach. AVO attributes and inversion techniques can both be used to validate pre-drill hypotheses and build confidence in predrill prediction of reservoir rock and fluid properties.

Sharp Reflections illustrates this phased analysis approach with a recent exploration prospect in the Miocene-aged Utsira Formation offshore Norway. Prestack techniques help to establish the seismic signature of high-porosity sandstone reservoirs and assess the likelihood of gas versus oil fill using facies-based prestack Bayesian inversion.

Case study: Utsira Formation reservoirs in northern North Sea

Discovery of the giant Johan Sverdrup Field has triggered active, infrastructure-led exploration in this area, at all stratigraphic levels. Miocene-aged sandstones of the Utsira Formation are present in this area, defining a broad NS-trending band that extends along much of the southern Norwegian coast. Stratigraphically, these can be interpreted as basinal lowstand deposits, overlain by thick prograding wedges of Pliocene age.

Detailed 3D interpretation on a merged 3D survey east and north of Johan Sverdrup reveals a prospective area where a relatively thick Utsira Formation is present in the north-central part of the survey (Figure 1). The upper Utsira is dominated by high-amplitude reflections, which are a few seismic cycles thick. In this area, the strongest reflections appeared to be localized near the top of what looks to be a major mass flow deposit. Differential compaction of the mass flow complex formed a distinct structural closure, with more than 40 m of relief. 

Internally, the Utsira Formation amplitude patterns are complex, suggesting an interplay of heterogenous lithology, fluid and tuning effects. These needed to be unravelled to properly assign predrill risks to presence of reservoir, presence of hydrocarbons and likely hydrocarbon phase (gas or oil).

Rock property calibration

Lundin Petroleum supplied the seismic, well data and rock property information. From there, forward seismic modeling was carried out to support the hypothesis that bright amplitudes at the top of the mass flow complex result from reflections at the top and base of high-porosity Utsira sandstones. Neither of the two exploration wells in the 3D survey encountered Utsira Formation sandstones. Instead, several wells in exploration Block 16/4 (due west of the 3D survey area) were used to establish velocity and densities for gas, oil and brine-filled Utsira Formation sands as well as overlying and underlying shales (Figure 2).

Models with oil or gas-filled sands both predict strong top and base sand amplitudes at all angles. Oil sands are predicted to be somewhat less reflective than gas (depending on oil properties) and dim slightly with reflection angle. In contrast, brine sands are expected to show only a weak near angle response and dim more rapidly with angle. While both acoustic impedance and Vp/Vs response should both help differentiate facies, acoustic impedance alone might be sufficient to distinguish between brine, oil and gas cases.

Prestack amplitude interpretation

Prestack gathers were used to compute amplitude-versus-angle (AVA) attributes and angle stacks for quantitative analysis. The AVA gradient map at the interpreted top Utsira Formation shows stripy amplitude banding that was not observed on any other amplitude map (Figure 2). These are aligned in the inline direction and indicate acquisition footprint contamination. These persist even after prestack data conditioning and suggest that AVA gradient reflectivity might not be sufficiently reliable to track changes in Vp/Vs reflectivity contrast on specific events. As a result, quantitative attempts to predict facies from simultaneous prestack inversion are likely to rely heavily on acoustic impedance contrasts on near-angle stacks.

Sharp Reflections
Litho-fluid classes obtained from the well in Block 16/4 show a very strong separation in elastic properties between the gas sand and the other sand or shale classes. While the AVO gradient is clearly affected by acquisition imprint, the inversion shows a very robust distinction between the gas sand areas in red and the other lithologies elsewhere. (Source: Sharp Reflections)

AVO inversion

A detailed seismic reflectivity analysis suggests these map view amplitude patterns might be explained by a geologic model with narrow sand fairways that are sandwiched by shales above, below and laterally.

To investigate this in more detail, Sharp Reflections carried out prestack seismic facies inversion using a simple sand-shale model, with any combination of brine, oil or gas sand possible.

The inversion produces probability volumes for each of these litho-classes. It was found that the only model that predicted the very bright observed amplitudes requires the gas sand litho-class within those areas (Figure 2). This does not imply that they are gas sands but shows that elastic properties are most consistent with the gas sands included in the rock physics model.

Elsewhere, the results suggest a shale-dominated unit and predicts a low likelihood of encountering either brine sands or oil sands. This may be due to the use of litho-classes and fluid properties obtained some distance from this area, which may not capture the fine detail of local variations. Nonetheless, if oil or brine sands are present but unrecognized by the inversion, their elastic properties presumably have greater contrasts with the shales than was seen in the Block 16/4 area.

In the prospect, likely gross gas sand volumes are estimated to be nearly 50 Mm3 with an estimated column height of 40 m, implying that the container is filled to spill point. Using average porosities of 36% (obtained from the Block 16/4 wells), this translates to a pore volume of 16.6 Mm3. This is an attractively sized oil prospect, though less interesting in the gas case.

Conclusion

Well 26/10-1 tested the hydrocarbon potential in the Miocene Utsira Formation sand. The well encountered Utsira Formation gas sand with very good reservoir quality. Pressure measurements imply a gas column of 36 m at the well, consistent with prediction from the prestack inversion.

This result highlights the value of probability-based prestack facies inversion to evaluate new play concepts in maturing exploration areas. Sharp Reflections’ Big Data software permits execution of this integrated processing and interpretation workflow efficiently, using all prestack gathers.

Prestack methods allowed more rigorous testing of reservoir predrill scenarios and to assess the probability of gas versus oil. Rigorous quality assurance of AVA amplitudes clearly highlighted the limitations of using AVA amplitude gradients to discriminate facies. Nonetheless, confident facies prediction was achieved, presumably because near-angle data permitted fairly accurate acoustic impedance estimation.

This example shows that even in new plays, quantitative inversion-led techniques can reduce drilling risk by validating predrill reservoir scenarios. Quantitative amplitude interpretation plays an even more important role in appraisal and field development, as the rock property data collected in wells permit more quantitative amplitude calibration. Prestack methods stand to grow in adoption as companies seek to improve interpretation accuracy and increase recovery from all fields.


RELATED CONTENT:

July 26, 2021 AI and Ultralong Offsets Updating the Story of Utsira OBN

July 23, 2021 Visualization Platforms Create a New Look for Field Services Project Management

July 20, 2021 Reading Between the Lines of Subsurface Data

July 13, 2021 Exploration: Leveraging Digitalization to Maximize Results in the Field

June 22, 2021 Geomechanical Rock Properties Prediction from Seismic Data

June 14, 2021 Artificial Intelligence Platform Accelerates Reservoir Opportunity Identification