水库

历史匹配和预测-2024

今年的历史匹配和预测选择涵盖了预测反应岩中二氧化碳矿化时空动态的深度学习框架、使用耦合全场和近井眼孔隙力学模型进行产能下降分析,以及储层图网络模型非常规油藏多井预测。

HMF 焦点介绍

今年的历史匹配和预测选择涵盖的主题包括预测反应岩中CO 2矿化的时空动态的深度学习框架、使用耦合全场和近井孔孔隙力学模型进行生产力下降分析以及非常规油藏多井预测的油藏图网络模型。

在论文SPE 216998中,作者提出了一种深度学习方法来创建能够预测 CO 2注入深层盐水层期间矿物质沉淀的替代模型。作者指出,这种方法可以快速评估每种矿物在 CO 2矿化过程中的单独贡献。

SPE 212200论文的主题是全油田油藏模型和近井筒孔隙力学模型的耦合方案、其在深水油藏产能指数 (PI) 递减分析中的应用以及油井产能递减效应的评估。据作者介绍,耦合方案捕获了地质力学损伤,预测了不同水位下降的 PI 趋势,并能够识别操作决策的安全水位下降限制。

论文URTeC 3855422的作者提出了一种混合方法,将物理学与数据驱动的方法相结合,用于预测共同开发下的非常规油井的性能。据作者介绍,储层图网络模型使用一组由孔隙体积和渗透率参数化的一维网格块来描述非常规井的排水量,为非常规井的性能建模、历史匹配和预测提供了一种有效的方法。通过降低系统复杂性同时保持基本物理原理来实现井。

本月的技术论文

深度学习框架预测二氧化碳矿化动态

孔隙力学建模预测产量、分析生产率下降

混合方法在非常规油气多井预测中被证明是有效的

推荐补充阅读

URTeC 3862949 表征水平井场不确定性的稳健工作流程:非常规油藏的多井历史匹配, 作者:德克萨斯大学奥斯汀分校 Chuxi Liu 等人。

SPE 212668 模拟机会指数和辅助历史匹配在致密碳酸盐岩气藏现有单水平井鱼骨完井策略中的应用,作者:Bondan Bernadi、ADNOC 等人。

SPE 212723 使用基于机器学习的新颖方法进行自动化生产预测, 作者:Kaustubh Shrivastava、SLB 等人。

Gopi Nalla, SPE,是 DeGolyer 和 MacNaughton 的高级油藏工程师。他拥有 21 年的行业经验,此前曾在雪佛龙公司工作 12 年,在爱达荷国家实验室工作 2 年。 Nalla 拥有德克萨斯大学奥斯汀分校石油工程硕士学位和印度特里奇国立理工学院化学工程学士学位。他是德克萨斯州和加利福尼亚州持有执照的专业工程师,在JPT编辑审查委员会任职,并担任SPE 油藏评估与工程的审查员。可以通过gnalla@demac.com联系 Nalla 。

原文链接/jpt
Reservoir

History Matching and Forecasting-2024

This year’s history matching and forecasting selections cover a deep-learning framework to forecast spatial/temporal dynamics of CO2 mineralization in reactive rocks, productivity decline analysis using coupled full-field and near-wellbore poromechanics modeling, and a reservoir graph network model for multiwell forecasting in unconventional reservoirs.

HMF Focus intro

This year’s history matching and forecasting selections cover topics that include a deep-learning framework to forecast spatial/temporal dynamics of CO2 mineralization in reactive rocks, productivity decline analysis using coupled full-field and near‑wellbore poromechanics modeling, and a reservoir graph network model for multiwell forecasting in unconventional reservoirs.

In paper SPE 216998, the authors present a deep-learning methodology to create surrogate models capable of predicting the precipitation of minerals during CO2 injection into deep saline aquifers. The authors state that this approach allows for the rapid assessment of the individual contributions of each mineral in the CO2 mineralization process.

A coupling scheme of a full-field reservoir model and a near-wellbore poromechanics model, its application on productivity index (PI) decline analysis for a deepwater reservoir, and the evaluation of the drawdown effect on well productivity is the subject of paper SPE 212200. According to the authors, the coupling scheme captured geomechanical damages, predicted PI trends with different drawdowns, and enabled identification of safe drawdown limits for operational decisions.

The authors of paper URTeC 3855422 present a hybrid approach that combines physics with data‑driven approaches for forecasting the performance of unconventional wells under codevelopment. As per the authors, the reservoir graph network model, which describes the drainage volume of an unconventional well using a set of 1D gridblocks parameterized by pore volume and transmissibility, provides an efficient way to model, history-match, and forecast the performance of unconventional wells by reducing the system complexity while maintaining the fundamental physics.

This Month’s Technical Papers

Deep-Learning Framework Forecasts Dynamics of Carbon Dioxide Mineralization

Poromechanics Modeling Forecasts Production, Analyzes Productivity Decline

Hybrid Approach Proves Effective in Multiwell Forecasting in Unconventionals

Recommended Additional Reading

URTeC 3862949 A Robust Workflow To Characterize Uncertainties of a Horizontal Well Pad: Multiwell History Matching for Unconventional Reservoirs by Chuxi Liu, The University of Texas at Austin, et al.

SPE 212668 Application of Simulation Opportunity Index and Assisted History Matching for Fishbone Completion Strategy in the Existing Single Horizontal Well in a Tight Gas Carbonate Reservoirby Bondan Bernadi, ADNOC, et al.

SPE 212723 Automated Production Forecasting Using a Novel Machine-Learning-Based Approach by Kaustubh Shrivastava, SLB, et al.

Gopi Nalla, SPE, is a senior reservoir engineer with DeGolyer and MacNaughton. He has 21 years of industry experience and has previously worked for 12 years with Chevron and 2 years with the Idaho National Laboratory. Nalla holds an MS degree in petroleum engineering from The University of Texas at Austin and a BS degree in chemical engineering from the National Institute of Technology Trichy, India. A licensed professional engineer in Texas and California, he serves on the JPT Editorial Review Board and as a reviewer for SPE Reservoir Evaluation & Engineering. Nalla can be reached at gnalla@demac.com.