油藏模拟

油藏模拟-2024

人工智能/机器学习与传统工作流程的结合标志着一个转折点,释放了这些成熟技术的巨大潜力,以解决我们日常在油藏模拟中面临的挑战。

JPT_2024-07_RSFocus.jpg

人工智能 (AI) 和机器学习 (ML) 的早期发展前景光明,但现在我们正目睹一波实际应用浪潮,正在改变油藏工程。AI/ML 与传统工作流程的结合标志着一个转折点,释放了这些成熟技术的巨大潜力,以应对油藏模拟中的日常挑战。

这些进步带来了更精确的模型和更快的模拟周转时间,使我们能够更有效地模拟各种场景。这些技术使我们能够更忠实地理解和模拟油藏行为,并专注于底层物理。这种更深入的理解意味着我们可以对油藏管理和开发做出更自信的决策,并更清楚地了解潜在风险。

基于物理的机器学习的出现是向前迈出的重要一步,它提高了我们的理解能力,提供了更好的模型,同时提高了运行时间、收敛性和整体性能。论文IPTC 23730强调了它在处理计算密集型任务(例如高精度临界温度预测)中的应用,从而显著提高了模拟速度,特别是对于进行可混合气体注入的复杂成分模型。

论文IPTC 23935介绍了一种完全不同的油藏模拟研究方法。自适应模型使用多个较小的专业模型,而不是一个巨型模型。这些模型可以独立开发和运行,从而实现并行工作流程并显著缩短周转时间。自适应模型培养了一种快速实验和迭代的文化,与快速失败方法完美契合——优先考虑快速评估想法,并丢弃那些早期没有显示出希望的想法。

论文SPE 214855全面概述了井筒建模这一复杂问题。本文提供了与我的工作直接相关的实用见解。

这些进步代表着重大的飞跃,为更强大、更通用的油藏模型铺平了道路。随着研究和开发的不断推进,这些技术将彻底改变我们管理和优化油气储层的方式。希望您喜欢阅读这些精选论文并从中受益。

本月的技术论文

物理信息机器学习应用于巨场中的复杂组合模型

油藏建模的自适应方法缩短了项目时间,改善了协作

综合多相流建模技术可准确预测井下压力

推荐阅读

SPE 216722 为碳捕获和储存项目的储层模拟开发一致的相对渗透率和毛细管压力模型, 作者:LS Lun、埃克森美孚等。

Anson Abraham, SPE,是加拿大自然资源有限公司 (CNRL) 的油藏工程师,拥有超过 17 年的行业经验。他的职业生涯经历包括担任 CNRL、计算机建模集团和 SLB 的各种油藏工程和模拟职位,以及在 SLB 期间进行油井测试和穿孔。Anson 拥有阿德莱德大学石油工程学士学位、法国石油学院油藏地球科学硕士学位以及卡尔加里大学工商管理硕士学位。

原文链接/JPT
Reservoir simulation

Reservoir Simulation-2024

The integration of artificial intelligence/machine learning with traditional workflows marks a turning point, unleashing the immense potential of these proven techniques to address our everyday challenges in reservoir simulation.

JPT_2024-07_RSFocus.jpg

The early days of artificial intelligence (AI) and machine learning (ML) were filled with promise, but now we’re witnessing a wave of practical applications transforming reservoir engineering. The integration of AI/ML with traditional workflows marks a turning point, unleashing the immense potential of these proven techniques to address our everyday challenges in reservoir simulation.

These advancements lead to more-accurate models and faster simulation turnaround times, allowing us to model various scenarios more efficiently. These techniques enable us to understand and simulate reservoir behavior with greater fidelity and focus on the underlying physics. This deeper understanding translates to more-confident decisions regarding reservoir management and development, with a clearer picture of potential risks.

Physics-informed machine learning emerges as a significant step forward, improving our understanding and providing better models while boosting runtimes, convergence, and overall performance. Paper IPTC 23730 highlights its application in tackling computationally intensive tasks such as critical temperature prediction with high accuracy, leading to significant speed-ups in simulations, particularly for complex compositional models undergoing miscible gas injection.

Paper IPTC 23935 presents a fundamentally different approach to reservoir simulation studies. Adaptive models use multiple smaller, specialized models instead of one giant model. These models can be developed and run independently, allowing for parallel workflows and significantly reduced turnaround times. Adaptive models foster a culture of rapid experimentation and iteration, aligning perfectly with the fail-fast approach—prioritizing the quick evaluation of ideas and discarding those that don’t show promise early on.

Paper SPE 214855 provides a comprehensive overview of a complex problem—wellbore modeling. This paper offers practical insights directly relevant to my work.

These advancements represent a significant leap forward, paving the way for more-powerful and -versatile reservoir models. As research and development continue, these techniques are poised to revolutionize how we manage and optimize oil and gas reservoirs. I hope you enjoy reading this selection of papers and find them enlightening.

This Month’s Technical Papers

Physics-Informed Machine Learning Applied to Complex Compositional Model in a Giant Field

Adaptive Approach for Reservoir Modeling Reduces Project Time, Improves Collaboration

Integrated Multiphase-Flow Modeling Technique Yields Accurate Downhole Pressure Predictions

Recommended Additional Reading

SPE 216722 Developing Consistent Relative Permeability and Capillary Pressure Models for Reservoir Simulation of Carbon Capture and Storage Projects by L.S. Lun, ExxonMobil, et al.

Anson Abraham, SPE, is a reservoir engineer at Canadian Natural Resources Ltd. (CNRL) with more than 17 years of experience in the industry. His professional journey has taken him through various reservoir engineering and simulation roles at CNRL, Computer Modelling Group, and SLB, as well as well testing and perforating while at SLB. Anson holds a bachelor’s degree in petroleum engineering from the University of Adelaide, a master’s degree in reservoir geosciences from the French Institute of Petroleum, and an MBA degree from the University of Calgary.