能源转型

客座社论:如何利用勘探与生产专业知识促进新能源经济

勘探与生产行业的技术和知识基础将在更新的低碳能源经济中发挥重要作用。

净零和碳中和概念
资料来源:盖蒂图片社

“新能源经济”一词泛指向低碳未来转型,以维持人类发展,同时减少CO 2排放。

这种转变被认为是继1900年代初期从生物质到煤炭作为主要能源的转变,以及随后在20世纪60年代至1970年代石油取代煤炭的主导地位之后的现代第三次能源转型。

这种脱碳趋势(即从碳密集型化石燃料到可持续的绿色能源原料和载体的多样化)是由于人们认识到需要减少排放以减轻全球气温上升对未来气候变化的潜在影响。

拟议的脱碳途径的共同策略包括

  • 提高能源效率(即与 GDP/人口增长相比,能源需求增长放缓)。
  • 增加可再生能源(即风能、太阳能、地热能、核能)的能源供应,并结合氢地下储存(HUS)作为储存剩余电能的一种方式。
  • 转向低碳能源载体(即氢)以实现交通、建筑和工业的最终应用。
  • 通过碳捕获、利用和储存 (CCUS),消除化石燃料发电厂和难以减少的工业来源的碳排放。

读者的主要收获是两种面向地下的脱碳策略(CUS 和 HUS)如何与石油和天然气行业勘探和生产 (E&P) 部门的专业知识的应用/适应相关。它们的崛起将建立在数十年的 CO 2 -EOR、注气、采出水处理和地下天然气储存 (NGS) 经验的基础上。

碳捕获、利用和封存(CCUS)

如图1所示, CCUS涉及从化石燃料发电厂或工业设施中捕获CO 2并将其加工成几乎纯净的形式,通过管道将其运输到附近的地质封存地点,并将其注入盐水层中用于长期封存或枯竭的油气田,以提高石油采收率 (EOR) 和相关储存。

CCUS 示意图。
图1-CCUS 示意图。
资料来源:国家石油委员会,2019 年。

过去几十年的研究和现场示范项目已经证明CCUS是减少大气CO 2排放累积的可行技术。

CCUS 项目的一些关键要素及其与相应勘探与生产专业知识的重叠总结如下。

存储资源评估。该步骤涉及对可储存在目标地层中的CO 2量的估计,尤其是在注入前评估和许可阶段。区分以下两种方法很重要:(a) 适用于深层咸水含水层的体积法,其区域范围广泛,因此类似于无限作用的储层;(b) 适用于枯竭油/气田的孔隙置换型方法。本质上是封闭的水库。

此外,SPE 最近开发了二氧化碳封存资源管理系统 (SRMS),类似于石油资源管理系统 (PRMS),为封存资源的量化、分类和分级提供了一个被接受和认可的系统。

储层特征。目标是了解目标储存地层的空间范围、边界、流动障碍和岩石/流体特性。此外,盖层和上覆密封层的岩土工程特性、地下饮用水源 (USDW) 的位置以及可能充当泄漏路径或触发注入诱发地震活动的导电裂缝和断层的存在对于 CCUS 项目也很重要。

数据稀疏性的挑战通常是咸水含水层面临的一个问题,因为项目通常仅拥有来自一个专用站点特征井以及可能是少数遗留井(来自石油和天然气勘探和/或地下废物注入)的数据。

压力传播和CO 2羽流建模。与 E&P 项目一样,静态和动态油藏建模是 CCUS 项目运营管理的基础。感兴趣的指标包括 (a) 注入井、盖层和封存地层中的压力累积,(b) CO 2羽流运移程度,以及 (c) 审查区域的划分,即注入井周围的区域,其中由于注射引起的超压积聚,USDW 可能会受到威胁。

石油和天然气行业的传统地质建模和模拟工作流程/工具已适应并应用于 CCUS 项目,以及简化的方法,例如锐界面模型和分流模型,这可能更适合项目开发商和/或监管机构。然而,数据稀疏性的影响是一个重要的限制,特别是对于模型与从有限数量的监测井收集的观测数据的历史匹配而言。

水库动态监测。与勘探和生产注入井相比,地质封存井的监管指南通常规定更多的系统演化和储存完整性监测。所需的详细监测包括地球物理调查、地球化学采样、地质力学测量以及储层和盖层的动态压力和温度传感。此外,为了获得税收抵免或交易碳许可证,还需要详细的监控、验证和会计记录。

氢气地下储存(HUS)

图2描绘了氢价值链,其中包括(a)结合CCUS从可再生能源生产绿色氢或从化石燃料来源生产蓝色氢,(b)储存在物理容器或地下地质构造中,以及( c) 工业、交通和能源部门的最终用途。HUS 对于管理可再生能源发电的间歇性特别有吸引力,并且在概念和执行方面与含水层、枯竭石油/天然气田和盐穴中的活跃地下 NGS 存储项目相似。

氢价值链包括氢地下储存。
图2“氢价值链,包括氢地下储存。
资料来源:Ma 等人,2018。

HUS 项目的一些关键要素及其与相应勘探与生产专业知识的重叠总结如下。

储层特征/开发。咸水层的表征需求与之前讨论的相同,而枯竭的油气田将有一个预先建立的数据库用于储层表征。HUS 通过盐水循环建造盐穴的方式与 NGS 类似,但需要更好的地质力学特征和盐蠕变、洞穴完整性和流体泄漏建模。

良好的交付能力。氢气井的产能可以使用标准 NGS 井产能方程进行评估,该方程包括达西和非达西流动分量(根据氢气性质进行调整)。类似地,注入/生产过程中井筒压力和温度变化的通用方程需要适应氢的特定条件。HUS 项目还可以从流入性能和节点分析的标准工作流程应用中受益,以集成地面、井眼和地下元素。

液体排出的动力学。HUS 的动态建模可以建立在 NGS 和 CCUS 工具和经验的基础上,但氢的高流动性(即重力偏析、粘性指进)引起的复杂性需要在模拟设计和操作规划中解决。另一个挑战是氢气生产过程中水锥进(来自含水层)和碳氢化合物回收(来自枯竭的石油/天然气田)的建模和管理。此外,高水平的氢扩散性和反应性(与岩石、原位流体和细菌)需要使用耦合成分流和生物化学反应传输模型来评估储层和盖层完整性。

哪些技能需要更新?

我们认为,CCUS 和 HUS 的地下科学和工程方面的基础准备应来自传统的石油工程和地球科学课程,通过油藏表征、井筒水力学和油藏工程等核心课程。此外,还需要一些专门课程来满足 CCUS 和 HUS 行业的特定需求,如下所示。

CCUS 的基础。CCUS 原理、CO 2捕集、管道运输、地质封存基础知识、含水层与枯竭油/气田、监测、风险分析、许可以及全球现状/前景。

HUS 的基础。氢气使用原理、管道运输、地质储存选项(盐穴、枯竭气/油田、含水层)、洞穴工程、地质特征、油井产能、油藏力学和风险分析。

CCUS 和 HUS 的先进油藏科学与工程。存储资源估计、源汇匹配、监测、验证和核算 (MVA)、油井产能、注入性和羽流迁移模型以及压力和速率瞬态分析。

CCUS 的风险分析和许可。风险源识别、后果分析、风险管理和缓解、监管框架(EPA VI 级许可、欧盟 CCS 指令)、监管合规性和 MVA 文档。

这些课程可以作为专业和/或证书课程纳入现有的石油工程和/或地球科学课程。

它们还可以通过培训联盟或大学扩展计划等提供商引入继续教育市场。表 1总结了 CCUS 和 HUS 与典型 E&P 作业相比的一些关键方面

CCUS 和 HUS 的关键方面与 E&P 项目表的比较

未来预测

当前能源转型的步伐将取决于(a)可大规模部署的低碳技术的可用性,以及(b)与成本效益考虑相关的社会需求。

鉴于所需资本流入的规模和供应链的复杂重组,现有石油和天然气公司从技术经济和人力资本的角度都可以发挥重要作用。

为此,我们讨论了如何利用相关的勘探与生产专业知识来满足新兴的 CCUS 和 HUS 市场的需求。我们坚信,通过适当的再教育和培训,石油和天然气专业人员的能力很容易适应此类项目,我们的行业不仅可以提供技术,还可以提供熟练的人力资源。

与此相关的是,石油工程技术已经应用于地热能,这是另一种零排放且完全可调度的电力和热源,也将在能源转型中发挥关键作用。

最后,我们认识到,大多数脱碳计划和净零情景中提出的理想目标需要从化石燃料转向低碳能源。然而,随着为了提高生活质量而对能源的需求不断增加(特别是在发展中国家),短期内的能源转型很可能会减少到能源多元化作为务实的解决方案。

包括可再生能源和化石燃料(主要是天然气)在内的各种能源最有可能与 CCUS 和 HUS 结合使用,并在此期间将CO 2 -EOR 用作过渡技术。因此,无论低碳路径的采用轨迹如何,勘探与生产行业的技术和人力资源基础都将在新能源经济中发挥至关重要的作用。

致谢

我们感谢乔伊·弗兰克-柯林斯(巴特尔)对手稿的仔细审阅。美国能源部、巴特尔纪念研究所的中西部地区碳计划和德克萨斯农工大学的模型校准和高效储层成像 (MCERI) JIP 为本文的准备工作提供了支持。

供进一步阅读

SPE 210372 将石油储层工程原理应用于碳捕集与封存 (CCS) 和氢地下储存 (HUS) 项目:机遇与挑战,作者: Srikanta Mishra(巴特尔纪念研究所)和 Akhil Datta-Gupta(德克萨斯 A&M 大学)。

基于电转气的地下储能:综述。《可再生和可持续能源评论》,J. Ma、Q. Li、M. Kühn 和 N. Nakaten,2018 年。

地下储氢的不确定光明未来 作者:Trent Jacobs,SPE, JPT,2023 年 4 月。


Srikanta Mishra, SPE,是巴特尔纪念研究所 (Battelle Memorial Institute) 的地能建模和分析技术总监,该研究所是世界上最大的非营利性私人研发组织。他拥有斯坦福大学石油工程博士学位。米什拉是一位公认的专家,擅长理解和交流各种地能问题领域的模型和数据驱动的见解以及新能源经济相关地下技术(例如地质碳储存和氢地下储存)的基础方面。他获得了 2022 年 SPE 数据科学与工程分析奖、2021 年 SPE 杰出会员奖,并在 2018 年至 2019 年期间担任 SPE 大数据分析杰出讲师。他是大约 200 种技术出版物、一本教科书和三本合集的作者。他还是 SPE 和其他组织的数据分析和能源转型短期课程的热门讲师。您可以通过mishras@battelle.org联系他。

Akhil Datta-Gupta, SPE,德克萨斯农工大学哈罗德·万斯石油工程系董事教授、大学杰出教授和 LF Peterson 讲座教授。他的研究兴趣包括高分辨率流动模拟、石油储层管理/优化、使用反演方法进行大规模参数估计以及不确定性量化。Datta-Gupta 拥有德克萨斯大学奥斯汀分校石油工程博士学位。他是 SPE 荣誉会员,并荣获 SPE 2003 年 Lester C. Uren 奖和 2009 年 John Franklin Carll 奖。他于 2012 年当选为美国国家工程院院士。可通过 datta-gupta@tamu.edu 联系 Datta- Gupta

原文链接/jpt
Energy transition

Guest Editorial: How To Leverage E&P Expertise for the New Energy Economy

The technology and knowledge base of the E&P sector is poised to play a major role in the newer, lower-carbon energy economy.

Net Zero and Carbon Neutral Concepts
Source: Getty Images

The term “new energy economy” broadly refers to the transition to a low-carbon future for sustaining human development while reducing CO2 emissions.

Such a shift is considered to be the third energy transition of the modern era, after the shift from biomass to coal as the primary source of energy in the early 1900s, followed by oil overtaking coal’s dominant position in the 1960s–1970s.

This trend towards decarbonization (i.e., diversification from carbon-intensive fossil fuels to sustainable greener energy feedstocks and carriers) is motivated by the understanding that emissions need to be reduced to moderate the potential impacts of global temperature rise on future climatic changes.

Strategies common to proposed decarbonization pathways include

  • Improving energy efficiency (i.e., slower increase in energy demand compared to GDP/population increase).
  • Increasing energy supply from renewable sources (i.e., wind, solar, geothermal, nuclear) coupled with hydrogen underground storage (HUS) as a way of storing surplus electrical energy.
  • Switching to low-carbon energy carriers (i.e., hydrogen) for end‑use applications in transportation, buildings, and industry.
  • Removing carbon emissions, via carbon capture, utilization, and storage (CCUS), from fossil-fuel-fired power plants and hard-to-abate industrial sources.

The key takeaway for readers is how the two subsurface-oriented decarbonization strategies—CCUS and HUS—are relevant for application/adaptation of expertise from the exploration and production (E&P) sector of the oil and gas industry. Their rise will be built upon decades of experience with CO2-EOR, gas injection, produced-water disposal, and underground natural gas storage (NGS).

Carbon Capture, Utilization and Storage (CCUS)

As shown in Fig. 1, CCUS involves capturing CO2 from a fossil-fuel-fired power plant or industrial facility and processing it to a practically pure form, transporting it to a nearby geologic storage site using pipelines, and injecting it into saline aquifers for long-term sequestration or depleted oil/gas fields for enhanced oil recovery (EOR) and associated storage.

Schematic of CCUS.
Fig. 1—Schematic of CCUS.
Source: National Petroleum Council, 2019.

Research and field demonstration projects over the past few decades have demonstrated that CCUS is a viable technology for curtailing atmospheric CO2 emissions buildup.

Some of the key elements of CCUS projects and their overlap with corresponding E&P expertise are summarized below.

Storage resource assessment. This step involves an estimation, especially during the pre-injection appraisal and permitting phases, of the quantity of CO2 that can be stored in the target formation. It is important to distinguish between (a) volumetrics-type approaches appropriate for deep saline aquifers which can be regionally extensive and hence, akin to infinite-acting reservoirs, and (b) voidage-replacement type approaches appropriate for depleted oil/gas fields which are essentially closed reservoirs.

Also, SPE has recently developed the CO2 Storage Resources Management System (SRMS), analogous to the Petroleum Resources Management System (PRMS), to provide an accepted and recognized system for quantifying, categorizing, and classifying storage resources.

Reservoir characterization. The goal is to understand the spatial extent, boundaries, flow barriers, and rock/fluid properties of the target storage formation. In addition, geotechnical properties of the caprock and overlying seals, location of underground sources of drinking water (USDW), and presence of conductive fractures and faults that could act as leakage pathways or trigger injection-induced seismicity are also important for CCUS projects.

The challenge of data sparsity is generally a concern for saline aquifers, as projects will typically have data only from one dedicated site‑characterization well and perhaps a handful of legacy wells (from oil and gas exploration and/or subsurface waste injection).

Pressure propagation and CO2 plume modeling. As with E&P projects, static and dynamic reservoir modeling are fundamental to operational management of CCUS projects. The metrics of interest are (a) pressure buildup in the injection well, caprock, and storage formation, (b) CO2 plume migration extent, and (c) delineation of the Area of Review, i.e., a region surrounding the injection well where USDW may be endangered because of injection-induced excess pressure buildup.

Conventional geologic modeling and simulation workflows/tools from the oil and gas industry have been adapted and applied for CCUS projects, along with simplified approaches such as sharp-interface models and fractional-flow models, which may be more appropriate for project developers and/or regulators. However, the impact of data sparsity is an important constraint, especially for history matching of models to observational data collected from a limited number of monitoring wells.

Monitoring of reservoir performance. Regulatory guidance for geologic sequestration wells generally stipulates more involved monitoring of system evolution and storage integrity compared to E&P injection wells. Required detailed surveillance involves geophysical surveys, geochemical sampling, geomechanical measurements, and dynamic pressure and temperature sensing in the storage reservoir and caprock. Also, detailed documentation of monitoring, verification, and accounting is needed for receiving tax credits or trading carbon permits.

Hydrogen Underground Storage (HUS)

Fig. 2 depicts the hydrogen value chain, which includes (a) production of green hydrogen from renewable sources or blue hydrogen from fossil-fuel-based sources in conjunction with CCUS, (b) storage in physical containers or underground geologic formations, and (c) end use in industry, transportation, and energy sectors. HUS is particularly attractive for managing the intermittency of renewable power generation and is similar in concept and execution to active underground NGS storage projects in aquifers, depleted oil/gas fields, and salt caverns.

Hydrogen value chain including hydrogen underground storage.
Fig. 2—Hydrogen value chain including hydrogen underground storage.
Source: Ma et al., 2018.

Some of the key elements of HUS projects and their overlap with corresponding E&P expertise are summarized below.

Reservoir characterization/development. The characterization needs for saline aquifers is the same as was discussed earlier, whereas depleted oil/gas fields will have a pre-established database for reservoir characterization. The construction of salt caverns via brine circulation for HUS would be similar to that for NGS, albeit with the needs for better geomechanical characterization and modeling of salt creep, cavern integrity, and fluid leakage.

Well deliverability. The productivity of a hydrogen well can be evaluated using standard NGS well-deliverability equations that include both Darcy and non-Darcy flow components—adjusted for hydrogen properties. Similarly, the common equations for wellbore pressure and temperature changes during injection/production need to be adapted for hydrogen-specific conditions. HUS projects can also benefit from the application of standard workflows from inflow performance and nodal analysis for integrating surface, wellbore, and subsurface elements.

Dynamics of fluid withdrawal. Dynamic modeling of HUS can build on NGS and CCUS tools and experience, but complications caused by high mobility of hydrogen (i.e., gravity segregation, viscous fingering) need to be addressed in simulation design and operational planning. Another challenge is the modeling and management of water up-coning (from aquifers) and hydrocarbon recovery (from depleted oil/gas fields) during hydrogen production. Also, the high levels of hydrogen diffusivity and reactivity (with rock, in situ fluids and bacteria) require assessment of reservoir and caprock integrity using coupled compositional flow and bio‑geo-chemical reactive transport models.

What Skills Need Updating?

We believe that the foundational preparation for the subsurface science and engineering aspects of both CCUS and HUS should come from traditional petroleum engineering and geoscience curricula via core courses in reservoir characterization, wellbore hydraulics, and reservoir engineering. In addition, several specialized courses would be required to address the CCUS and HUS industry-specific needs, as follows.

Foundations of CCUS. CCUS rationale, CO2 capture, pipeline transport, geological storage basics, aquifers vs. depleted oil/gas fields, monitoring, risk analysis, permitting, and global status/outlook.

Foundations of HUS. Hydrogen usage rationale, pipeline transport, geological storage options (salt caverns, depleted gas/oil fields, aquifers), cavern engineering, geological characterization, well deliverability, reservoir mechanics, and risk analysis.

Advanced reservoir science and engineering for CCUS and HUS. Storage resource estimation, source-sink matching, monitoring, verification, and accounting (MVA), well deliverability, injectivity and plume migration models, and pressure and rate transient analysis.

Risk analysis and permitting for CCUS. Risk source identification, consequence analysis, risk management and mitigation, regulatory framework (EPA class VI permitting, EU CCS directive), regulatory compliance, and MVA documentation.

These courses can be incorporated into existing petroleum engineering and/or geoscience curricula as specializations and/or certificate programs.

They can also be introduced in the continuing education marketplace through providers such as training consortia or university extension programs. Some key aspects of CCUS and HUS as compared to typical E&P operations are summarized in Table 1.

Key aspects of CCUS and HUS as compared to E&P projects table

Future Prognosis

The pace of the current energy transition will depend on (a) availability of low-carbon technologies deployable at scale, and (b) societal demands linked to cost-benefit considerations.

Given the magnitude of capital inflows required and the complex restructuring of the supply chain, existing oil and gas companies can play a major role from both techno-economic and human capital perspectives.

To that end, we have discussed how relevant E&P expertise can be leveraged to meet the needs of the nascent CCUS and HUS marketplace. We strongly believe that the capabilities of oil and gas professionals are readily adaptable for such projects with appropriate re-education and training, and our industry can contribute not just with technology but also with skilled manpower.

On a related note, petroleum engineering skills are already being applied to geothermal energy, another emission-free and fully dispatchable power and heat source that will also play a critical role in the energy transition.

In closing, we recognize that the aspirational goals set forth in most decarbonization plans and net-zero scenarios would require a significant switch from fossil fuel to low-carbon sources. However, with the continued increase in energy demand to improve quality of life (especially in developing countries), energy transition in the near term will most likely reduce to energy diversification as a pragmatic solution.

A variety of energy sources including renewables and fossil fuel (primarily natural gas) will most probably be utilized in conjunction with CCUS and HUS, with CO2-EOR used as a bridge technology in the interim. As such, the technology and human resource base from the E&P sector is poised to play a vital role in the new energy economy—regardless of the trajectory of low‑carbon pathway adoption.

Acknowledgments

We thank Joy Frank-Collins (Battelle) for her careful review of the manuscript. Support for preparing the paper was provided by US DOE‑NETL’s Midwest Regional Carbon Initiative at Battelle Memorial Institute and Model Calibration and Efficient Reservoir Imaging (MCERI) JIP at Texas A&M University.

For Further Reading

SPE 210372 Adapting Petroleum Reservoir Engineering Principles to Carbon Capture & Sequestration (CCS) and Hydrogen Underground Storage (HUS) Projects: Opportunities and Challenges by Srikanta Mishra, Battelle Memorial Institute, and Akhil Datta-Gupta, Texas A&M University.

Power-to-Gas-Based Subsurface Energy Storage: A Review. Renewable and Sustainable Energy Reviews, by J. Ma, Q. Li, M. Kühn, and N. Nakaten, 2018.

The Uncertain Bright Future of Underground Hydrogen Storage by Trent Jacobs, SPE, JPT, April 2023.


Srikanta Mishra, SPE, is technical director for geo-energy modeling & analytics at Battelle Memorial Institute, the world’s largest not-for-profit private R&D organization. He holds a PhD in petroleum engineering from Stanford University. Mishra is a recognized expert on understanding and communicating model and data-driven insights for various geo-energy problem domains and foundational aspects of new energy economy-related subsurface technologies such as geological carbon storage and hydrogen underground storage. He received the 2022 SPE Data Science and Engineering Analytics Award, the 2021 SPE Distinguished Membership Award, and served as an SPE Distinguished Lecturer on big data analytics during the 2018–2019 season. He is the author of approximately 200 technical publications, one textbook, and three compiled volumes. He is also a popular instructor of short courses on data analytics and energy transition for SPE as well as other organizations. He may be contacted at mishras@battelle.org.

Akhil Datta-Gupta, SPE, is regents professor, university distinguished professor, and L.F. Peterson Endowed Chair professor in the Harold Vance Department of Petroleum Engineering at Texas A&M University. His research interests include high-resolution flow simulation, petroleum reservoir management/optimization, large-scale parameter estimation by use of inverse methods, and uncertainty quantification. Datta-Gupta holds a PhD in petroleum engineering from The University of Texas at Austin. He is an SPE Honorary Member and received SPE’s 2003 Lester C. Uren Award and 2009 John Franklin Carll Award. He was elected to the US National Academy of Engineering in 2012. Datta-Gupta may be contacted at datta-gupta@tamu.edu.