增强恢复能力

EOR 建模 - 2024

这些论文强调了该行业正在转向更高效的实践,每一篇论文都为解决 EOR 的更大难题做出了关键贡献。

JPT_2024-01_EOR焦点介绍

石油和天然气行业正处于解决平衡运营效率与环境管理的迫切需求的关键时刻。随着世界对气候变化和可持续发展的日益重视,该行业面临着提高运营效率和同时减少碳足迹的双重目标。这种平衡行为已成为对该行业长期生存至关重要的战略要务。鉴于最近的 COP28 协议强调“快速、公正、公平的能源转型”,低排放提高石油采收率 (EOR) 和运营优化的作用变得越来越重要。这一过渡期可能会持续数十年,需要采取务实的方法,尽可能高效、负责任地利用现有碳氢化合物资源。

为了优化运营和减少碳足迹,三篇创新技术论文讲述了通过建模和机器学习取得进步的连贯故事。这些论文强调了该行业正在转向更高效的实践,每一篇论文都为解决 EOR 的更大难题做出了关键贡献。

第一篇论文介绍了裂缝性油藏的先进建模方法,这是致密岩模拟的重大发展,简化了裂缝非均质性表征并提高了计算效率,对于优化页岩和致密油资源的资产开发决策至关重要。

第二篇论文以效率为主题,重点关注表面活性剂领域,探讨它们在非常规富液储层润湿性改变中的作用。这项研究提供了一种在油藏条件下筛选热稳定表面活性剂的系统方法,这对于提高碳氢化合物采收率至关重要,而无需进行不必要的现场试验。

本文的最后一部分是一项利用机器学习来预测 EOR 过程中注气参数的研究。这种方法解决了缺乏广泛的注气实验室数据的问题,展示了数据驱动的预测在提高运营效率和决策方面的力量。这些论文对技术创新进行了引人入胜的叙述,强调了高级建模和机器学习的作用。

随着石油和天然气行业在满足世界能源需求的重要使命中取得进展,技术创新的关键作用变得越来越明显。在快速发展的能源格局中,专注于运营优化和减少碳排放的先进技术对于增强行业的适应性和弹性至关重要。

本月的技术论文

模型显示计算增益,保持紧岩 EOR 的准确性

工作流程通过改变润湿性筛选表面活性剂以提高采收率

基于机器学习的解决方案可预测气体注入数据的流体特性

推荐补充阅读

SPE 215083 预测聚合物油田项目裂缝延伸和弹性去饱和的分析工具,作者:德克萨斯大学奥斯汀分校 MB Abdullah 等人。

SPE 216822 阿曼北部碳酸盐岩油田低压气 (LTG) 驱的首次试点设计, 由阿曼石油开发公司 Mohammed Al-Abri 等人完成。

SPE 213037 聚合物驱速率和浓度的现场规模多阶段和多目标优化, 作者:Ruxin 张,德克萨斯 A&M 大学等人。

Hussein Hoteit, SPE,是沙特阿拉伯阿卜杜拉国王科技大学 (KAUST) 地球科学与工程教授兼能源与石油工程项目主席。在 2016 年加入阿卜杜拉国王科技大学之前,他在石油和天然气行业工作了大约 15 年,包括在雪佛龙和康菲石油公司工作,在那里他开展了与化学 EOR、CO 2 -EOR、蒸汽驱和 EOR 其他方面相关的项目。Hoteit 目前的研究包括化学 EOR、注水优化、地质 CO 2封存、玄武岩中 CO 2矿化、数据驱动建模和油藏模拟开发。他发表了 100 多篇技术论文,并获得了多个 SPE 奖项。Hoteit 于 2009 年成为 SPE 杰出讲师,并于 2017 年获得 A Peer Apart 奖。他担任SPE Journal副主编超过 10 年。Hoteit 拥有黎巴嫩大学数学学士学位以及法国雷恩大学计算机科学和应用数学硕士和博士学位。

原文链接/jpt
Enhanced recovery

EOR Modeling-2024

These papers underscore the industry’s shift toward more efficient practices, each contributing a crucial piece to the larger puzzle of EOR.

JPT_2024-01_EORFocus intro

The oil and gas industry is at a critical juncture in addressing the pressing need to balance operational efficiency with environmental stewardship. With the world’s growing emphasis on climate change and sustainability, the industry is tasked with the dual objectives of refining operational efficiency and simultaneously diminishing its carbon footprint. This balancing act has become a strategic imperative crucial for the long-term viability of the industry. In light of the recent COP28 agreement, which emphasizes a “swift, just, and equitable energy transition,” the role of low-emission enhanced oil recovery (EOR) and operational optimization becomes increasingly significant. This period of transition, which may span several decades, demands a pragmatic approach where the existing hydrocarbon resources are used as efficiently and responsibly as possible.

In the quest to optimize operations and reduce carbon footprint, three innovative technical papers present a cohesive story of advancement through modeling and machine learning. These papers underscore the industry’s shift toward more efficient practices, each contributing a crucial piece to the larger puzzle of EOR.

The first paper introduces an advanced modeling approach for fractured reservoirs, a significant development in tight rock simulations that simplifies fracture heterogeneity characterization and enhances computational efficiency, crucial for optimizing asset development decisions in shale and tight oil resources.

Building on the theme of efficiency, the second paper pivots to the realm of surfactants, exploring their role in wettability alteration within unconventional liquid-rich reservoirs. This research provides a systematic approach for screening thermally stable surfactants under reservoir conditions, crucial for improving hydrocarbon recovery without unnecessary field trials.

The final piece of this narrative is a study using machine learning to predict gas-injection parameters in EOR processes. This approach addresses the lack of extensive gas-injection laboratory data, demonstrating the power of data-driven predictions in enhancing operational efficiency and decision-making. These papers weave a compelling narrative of technological innovation, highlighting the role of advanced modeling and machine learning.

As the oil and gas industry progresses in its vital mission to supply the world’s energy needs, the pivotal role of technology innovation becomes increasingly evident. Advanced technologies focused on operational optimization and reducing carbon emissions are essential in reinforcing the industry’s adaptability and resilience in the context of this rapidly evolving energy landscape.

This Month’s Technical Papers

Model Shows Computational Gains, Preserves Accuracy in Tight Rock EOR

Work Flow Screens Surfactants for EOR Through Wettability Alteration

Machine-Learning-Based Solution Predicts Fluid Properties for Gas-Injection Data

Recommended Additional Reading

SPE 215083 An Analytical Tool to Predict Fracture Extension and Elastic Desaturation for Polymer Field Projects by M.B. Abdullah, The University of Texas at Austin, et al.

SPE 216822 First Pilot Design of Low-Tension-Gas (LTG) Flooding in Carbonate Field in North Oman by Mohammed Al-Abri, Petroleum Development Oman, et al.

SPE 213037 Field-Scale Multistage and Multiobjective Optimization of Rate and Concentration for Polymer Flooding by Ruxin Zhang, Texas A&M University, et al.

Hussein Hoteit, SPE, is a professor of earth science and engineering and chair of the Energy Resources and Petroleum Engineering program at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Before joining KAUST in 2016, he worked for approximately 15 years for the oil and gas industry, including at Chevron and ConocoPhillips, where he conducted projects related to chemical EOR, CO2-EOR, steamflooding, and other aspects of EOR. Hoteit’s current research includes chemical EOR, waterflooding optimization, geological CO2 sequestration, CO2 mineralization in basalt, data-driven modeling, and reservoir simulation development. He has published more than 100 technical papers and has earned several SPE awards. Hoteit was an SPE Distinguished Lecturer in 2009 and earned the A Peer Apart award in 2017. He served as an associate editor for SPE Journal for more than 10 years. Hoteit holds a BS degree in mathematics from the University of Lebanon and MS and PhD degrees in computer science and applied mathematics from the University of Rennes, France.