人工智能/机器学习

重复压裂混合解决方案实现两全其美

在非常规资源技术会议上,操作员向观众介绍了混合可扩展衬管系统和基于机器学习的分析如何提高盈利水平。

巴奈特页岩的重复压裂作业是 BKV 公司最近在成熟页岩气田中完成的数百项重复压裂作业之一。
巴奈特页岩的重复压裂作业是 BKV 公司最近在成熟页岩气田中完成的数百项重复压裂作业之一。
消息来源:BKV Corp.

混合可扩展衬管系统和机器学习(ML)驱动的分析正在帮助操作员通过完井实现产量最大化。

BKV 公司高级完井工程师 Kevin Eichinger 在 6 月 17 日于休斯顿举行的非常规资源技术会议 (URTeC) 上关于油藏建模、钻井和完井新技术和人工智能的小组讨论中表示,对于重复压裂而言,有时硬头管和衬管系统都不是最佳选择。

一口井可能适合重复压裂,因为井簇间距大,导致井段排水不充分,油层在井底漏出,还有其他原因。重复压裂候选井通常存在“多重不足”,他说。“最初的完井越不充分,重复压裂的机会就越大。”

他说,那时,作业者通常会决定是使用强力压裂还是安装衬管。他说,安装衬管的成本更高,但采收率比强力压裂更好。

“我们可以花更多的钱得到更多的钱,或者花更少的钱得到一些钱,但不会那么多,”他说。“我们想要两全其美。”

他说,BKV 开发了一种混合膨胀衬管系统和膨胀补片,并将其用于沃斯堡盆地的一口井。混合方法只对井的一部分进行衬管处理,将趾侧作为硬头阶段,而井的其余部分则作为塞孔阶段处理。

艾辛格说,在沃斯堡盆地 BKV 井的首次部署中,8% 的井壁产生了 8 个额外阶段,并指出硬头阶段在现有水平段内增加了第九个阶段。

“没有超过全衬砌井的油田范围的穿孔率,”他说道,并指出这不仅仅是运气好或碰到天然裂缝的问题。

他补充说,示踪剂显示,如果使用硬头式压裂,该井的产量将大大低于预期。

他说,使用滑溜水进行重复压裂“确实可以打开油井。”“每个人都在谈论页岩的急剧下降和从悬崖上掉下来。也许我们只需要继续重复压裂。”

让开,类型曲线
Encino Energy 的员工油藏建模师和地质学家 Nabiel Eldam 表示,私营石油和天然气生产商使用基于 ML 的方法来评估非常规资产的完井优化可能性。

“我们不使用 Encino 类型曲线。我们只使用模拟,”他说道,他指的是 Encino 多变量分析技术,该技术使用地质、油藏工程和生产数据。

他说,类型曲线对地理位置和完井年份变量运行单一二进制决策树回归,但 Encino 基于 ML 的方法对 20-30 个变量运行超过 500 个独特的二进制决策树回归,然后才返回优化完井设计的最经济结果。

埃尔达姆说:“它能让你获取所有数据,保持一致,对自己完全诚实,并且以数据为导向。”

他说,这种方法通常向操作员展示需要朝哪个方向发展。一旦在现场测试,它就会成为集成到程序下一次迭代中的数据点。

他说道:“数据越多越好。这种方法在美国非常规油气领域效果很好,因为那里有大量的油井数据。”


进一步阅读:
URTeC 3855094 混合可扩展衬管系统:一种性能增强、经济高效的 Bullhead 再压裂替代方案,
作者:BKV Corp. 的 Kevin Eichinger、Sam French、Ken Day、Jared Brady 和 Ryan Epperson;以及 Core Laboratories 的 ProTechnics 的 Richard Leonard 和 Brad Leonard。

原文链接/JPT
AI/machine learning

Hybrid Solution to Refracturing Delivers Best of Both Worlds

Operators tell an audience at the Unconventional Resources Technology Conference how a hybrid expandable liner system and machine-learning-based analysis improve the bottom line.

A refracturing operation in the Barnett Shale—one of hundreds that BKV Corp. has recently completed in the mature shale gas play.
A refracturing operation in the Barnett Shale—one of hundreds that BKV Corp. has recently completed in the mature shale gas play.
Source: BKV Corp.

Hybrid expandable liner systems and analysis fueled by machine learning (ML) are helping operators maximize production through completions.

When it comes to refracturing, it’s sometimes the case that neither a bullhead nor a liner system is optimal, Kevin Eichinger, senior completions engineer at BKV Corp., said during the 17 June panel on New Technologies and AI in Reservoir Modeling, Drilling, and Completions at the Unconventional Resources Technology Conference (URTeC) in Houston.

A well might be a candidate for refracturing because of wide cluster spacing so sections are not adequately draining, pay was passed up in the heel of the well, and other reasons. It’s common for refracturing candidate wells to have “multiple inadequacies stacked,” he said. “The more inadequate the original completion, the more opportunity there is when it’s time to refrac.”

At that time, the operator typically decides between a bullhead refracture or installing a liner, he said. Installing the liner is more expensive but results in better recovery than the bullhead option, he said.

“We can spend more and get more, or spend less and still get some, but not as much,” he said. “We wanted the best of both.”

BKV developed a hybrid expandable liner system with expandable patches and used it in a well in the Fort Worth Basin, he said. The hybrid approach lines only a portion of the well, leaving the toe side as a bullhead stage while the rest of the well is treated as plug-and-perf stages.

In the first deployment in a BKV well in the Fort Worth Basin, lining 8% of the well generated eight extra stages, Eichinger said, noting the bullhead stage added a ninth total stage within the existing lateral.

“It exceeded the fieldwide perf of fully lined wells,” he said, noting it wasn’t just a matter of getting lucky or hitting a natural fracture.

Tracers revealed that, with bullhead fracturing, the well would have significantly underperformed, he added.

Refracturing with slickwater “really unlocks the well,” he said. “Everybody talks about shales having steep declines and falling off a cliff. Maybe we just need to keep refracking ’em.”

Move Over, Type Curve
Nabiel Eldam, staff reservoir modeler and geologist at Encino Energy, said the private oil and gas producer uses an ML-based approach to evaluate completion optimization possibilities for unconventional assets.

“At Encino, we don’t use type curves. We only use Emulate,” he said, referring to the Encino Multivariable Analysis Technique, which uses geologic, reservoir engineering, and production data.

Type curves run single binary decision-tree regressions on geographic location and completion vintage variables, he said, but Encino’s ML-based approach runs more than 500 unique binary decision-tree regressions on 20–30 variables before returning the most economic results for optimized completion designs.

“It allows you to take all the data, be consistent, be completely honest with yourself, and be data-driven,” Eldam said.

He said the approach typically shows the operator which direction it needs to go. Once tested in the field, it becomes a data point integrated into the next iteration of the program.

“The more data, the better,” he said. “It works well in the unconventionals in the US where there’s lots of well data."


For Further Reading
URTeC 3855094 Hybrid Expandable Liner System: A Performance-Enhancing, Cost-Effective Alternative to Bullhead Refracturing
by Kevin Eichinger, Sam French, Ken Day, Jared Brady, and Ryan Epperson, BKV Corp.; and Richard Leonard and Brad Leonard, ProTechnics, Core Laboratories.